123. Best Time to Buy and Sell Stock III(贪心,hard)

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most two transactions.

Note:

You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).



分析:

在Discuss中看到一种很棒的解法,代码只有10行左右,但是不是很好理解。

第二种解法的核心是假设手上最开始只有0元钱,那么如果买入股票的价格为price,手上的钱需要减去这个price,如果卖出股票的价格为price,手上的钱需要加上这个price。

它定义了4个状态:

Buy1[i]表示前i天做第一笔交易买入股票后剩下的最多的钱;

Sell1[i]表示前i天做第一笔交易卖出股票后剩下的最多的钱;

Buy2[i]表示前i天做第二笔交易买入股票后剩下的最多的钱;

Sell2[i]表示前i天做第二笔交易卖出股票后剩下的最多的钱;

那么Sell2[i]=max{Sell2[i-1],Buy2[i-1]+prices[i]}

       Buy2[i]=max{Buy2[i-1],Sell[i-1]-prices[i]}

       Sell1[i]=max{Sell[i-1],Buy1[i-1]+prices[i]}

       Buy1[i]=max{Buy[i-1],-prices[i]}

可以发现上面四个状态都是只与前一个状态有关,所以可以不使用数组而是使用变量来存储即可。

这是leetcode中的讨论网址:https://leetcode.com/discuss/18330/is-it-best-solution-with-o-n-o-1


ac代码:

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int buy1=INT_MIN,buy2=INT_MIN,sell1=0,sell2=0,i,n=prices.size();
        for(i=0;i<n;i++)
        {
            buy1=max(buy1,-prices[i]);
            sell1=max(sell1,buy1+prices[i]);
            buy2=max(buy2,sell1-prices[i]);
            sell2=max(sell2,buy2+prices[i]);
        }
        return sell2;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值