
Networks
Never_Jiao
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
RPN的超详细解释
学习过程中看到了这篇博客,记录一下,方便后续回顾。https://blog.csdn.net/weixin_42782150/article/details/110421829转载 2022-03-19 11:26:24 · 414 阅读 · 0 评论 -
RCNN算法
Region CNN(RCNN)可以说是利用深度学习进行目标检测的开山之作。作者Ross Girshick多次在PASCAL VOC的目标检测竞赛中折桂,2010年更带领团队获得终身成就奖,如今供职于Facebook旗下的FAIR。这篇文章思路简洁,在DPM方法多年平台期后,效果提高显著。包括本文在内的一系列目标检测算法:RCNN, Fast RCNN, Faster RCNN代表当下目标检测的...转载 2020-02-19 20:24:30 · 1512 阅读 · 0 评论 -
深度学习的一些网络(论文内容)
卷积神经网络的基本结构的组合形成了许多经典网络结构。分类任务输入未知分类的目标图片,经过网络处理后给出对应图像类别。分类任务中使用的网络结构大多各不相同,研究者会针对不同的数据和分布情况设计适合的网络结构,但大多会借鉴自然图像中较常用的两类网络GoogleNet和ResNet,—些较早的研究大多借鉴AlexNet的网络结构。2.2.1 GoogleNet主要结构2014年提出的Google...原创 2020-02-18 21:40:25 · 666 阅读 · 0 评论 -
神经网络DenseNet训练CIFAR10数据集
经过dense_block之后,输出的通道数会非常大,我们通过一个transition层减少输出的通道数,同时减少输出大小。原创 2020-02-07 20:04:25 · 858 阅读 · 0 评论 -
神经网络ResNet训练CIFAR10数据集
loss在反向传播的过程中,传递到浅层的梯度非常小,使得浅层参数难以更新。resnet引入了残差单元(residual unit):通过直接和输入连接,使得浅层的参数变得可以训练。bottleneck将左图中的一个3*3的卷积层,改为了两个1*1的卷积层,在参数个数相近的情况下,加深了网络深度。resnet就是上面的残差单元(residual unit)或者是bottleneck不断...原创 2020-02-07 20:04:10 · 1282 阅读 · 0 评论 -
卷积神经网络训练技巧
1、数据增强(对训练数据进行扩充的方法)常用图像数据增强的方法:对图片进行一定比例的缩放 对图片进行随机位置的截取 对图片进行随机的水平和竖直翻转 对图片进行随机角度的旋转 对图片进行亮度、对比度和颜色的随机变化2、学习率衰减大学习率可能在目标值附近来回震荡,难以收敛。3、Dropout4、正则化...原创 2020-02-07 20:03:42 · 566 阅读 · 0 评论 -
神经网络GoogleNet训练数据集CIFAR10
GoogleNet神经网路结构一个 inception 模块的四个并行线路如下: 1.一个 1 x 1 的卷积,一个小的感受野进行卷积提取特征 2.一个 1 x 1 的卷积加上一个 3 x 3 的卷积,1 x 1 的卷积降低输入的特征通道,减少参数计算量,然后接一个 3 x 3 的卷积做一个较大感受野的卷积 3.一个 1 x 1 的卷积加上一个 5 x 5 的卷积,作用和第二个一样 4.一...原创 2020-02-07 19:52:23 · 1899 阅读 · 0 评论 -
神经网络VGGNet训练CIFAR10数据集
VGG网络结构 基本的单元(vgg_block)是几个卷积再加上一个池化,这个单元结构反复出现,用一个函数封装(vgg_stack).import numpy as npimport torchfrom torch import nnfrom torch.autograd import Variablefrom torchvision.datasets impor...原创 2020-02-05 16:46:52 · 1647 阅读 · 1 评论 -
神经网络AlexNet训练CIFAR数据集
AlexNet神经网络结构第一幅图的网络结构可以简化为第二幅图的网络结构。(但是,我没有算出和上图一样的特征图大小来,欢迎大佬指教)。import torchfrom torch import nnimport torch.nn.functional as Fimport numpy as npfrom torch.autograd import Variable...原创 2020-02-05 16:00:59 · 1273 阅读 · 3 评论 -
用model实现简单网络最常用的方法
网络结构在文章https://blog.csdn.net/Acmer_future_victor/article/details/103490422中有。# __author: Y# date: 2019/12/11import numpy as npimport torchimport torch.nn as nn# N是有多少个训练数据 D_in是输入维度N, D_in,...原创 2019-12-11 14:02:24 · 282 阅读 · 3 评论 -
用model实现一个简单网络的例子
网络结构在文章https://blog.csdn.net/Acmer_future_victor/article/details/103490422中有。# __author: Y# date: 2019/12/11import numpy as npimport torchimport torch.nn as nn# N是有多少个训练数据 D_in是输入维度N , D_in...原创 2019-12-11 14:01:07 · 237 阅读 · 0 评论 -
基于Tensor自动实现的简单网络
# __author: Y# date: 2019/12/11# h = W_1x+b_1# a = max(0, h)# Yhat = W_2a+b_2# - forward pass# -loss# -backward passimport numpy as npimport torch# N是有多少个训练数据 D_in是输入维度N , D_in, H, D_o...原创 2019-12-11 13:23:46 · 168 阅读 · 0 评论 -
基于Tensor手动实现的网络(网络结构同上一篇)
# __author: Y# date: 2019/12/11# h = W_1x+b_1# a = max(0, h)# Yhat = W_2a+b_2# - forward pass# -loss# -backward passimport numpy as npimport torch# N是有多少个训练数据 D_in是输入维度N , D_in, H, D_o...原创 2019-12-11 12:56:41 · 218 阅读 · 0 评论 -
基于Numpy手动实现一个简单网络
# __author: Y# date: 2019/12/11# h = W_1x+b_1# a = max(0, h)# Yhat = W_2a+b_2# - forward pass# -loss# -backward passimport numpy as np# N是有多少个训练数据 D_in是输入维度N , D_in, H, D_out = 6...原创 2019-12-11 12:42:29 · 173 阅读 · 0 评论