NC周赛96

C-Tk王国的括号

模拟链表删除的写法。由于从左往右遍历,因此next指针可以不需要(因为总是要检查下一个)。
每次检查当前节点和链表的前一个节点,如果匹配,那么删除这两个节点。详见代码。

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef vector<int> vi;
typedef unsigned long long ull;

const int N = 200020;
int n;
char s[N];
int pre[N];

bool match(char x, char y) {
	if(x >= 'N' && x <= 'Z') {
		return x - 'A' + y - 'A' == 25;
	} else if(x >= 'a' && x <= 'm') {
		return x - 'a' + y - 'a' == 25;
	}
	return false;
}


int main(){
//	freopen("in.txt", "r", stdin);
	scanf("%d", &n);
	scanf("%s", s + 1);
	for(int i = 1; i <= n; ++ i) {
		pre[i] = i - 1;
//		nxt[i] = i + 1;
	}
	int d = 0;
	for(int i = 1; i <= n; ++ i) {
		if(match(s[pre[i]], s[i])) {
			d += 2;
			int t = pre[pre[i]];
			pre[i + 1] = t;
		}
	}
	printf("%d\n", n - d);
	return 0; 
}

D-魔法棒

观察到每次分裂都会增加a2−1a^2-1a21个节点,因此答案就是需要我们构造出一种∑(ai2−1)=x−1\sum{(a_i^2-1)}=x-1(ai21)=x1
观察一下a2−1a^2-1a21这个数列:3,8,15,24,35,48...3,8,15,24,35,48...3,8,15,24,35,48...
容易注意到(!)构造得到的和或者是3的倍数,或者可以由一个8加上3的倍数,或者16加上3的倍数。
∴\therefore大于等于15时都有解。剩下的1-14随便搞搞。

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef vector<int> vi;
typedef unsigned long long ull;

ll n;
bool f[15];


void solve() {
	scanf("%lld", &n);
	n --;
	if(n >= 15) 
		printf("Yes\n"); 
	else {
		memset(f, 0, sizeof(f));
		f[0] = 1;
		for(int i = 2; i * i - 1 <= n; ++ i) {
			int a = i * i - 1;
			for(int j = 0; j < 15; ++ j) {
				f[a + j] |= f[j];
			}
		}
		if(f[n]) 
			printf("Yes\n");
		else 
			printf("No\n");
	}
}

int main(){
//	freopen("in.txt", "r", stdin);
	int t;
	scanf("%d", &t);
	while(t--) solve();
	return 0; 
}

E-字符串min-18

老实说这场的E不是很trick,但一开始不会做因为看起来很复杂。
看了一下题解,马上有了一个普遍性的划分:遍历0和1的每一位分界线,然后把问题分解成两个子问题。
1.设p0(i)p_0(i)p0(i)是到i位的前缀全改成0的最小代价
2.设s1(i)s_1(i)s1(i)是从i位的后缀全改成1的最小代价。此处都为1-index
容易得出答案=min⁡(p0(i)+s1(i+1))\min(p_0(i)+s_1(i+1))min(p0(i)+s1(i+1))
当然这样是不对的,因为前面有可能翻了奇数次,此时等价于后缀全改成0.因此还要记下翻转的次数,以及后缀改为0的最小代价s0(i)s_0(i)s0(i)

问题1比较好求,当si≠si−1s_i \neq s_{i-1}si=si1时再翻一次,反之就不用翻。
问题2稍微麻烦一点,比如我们计算后缀全改成1的代价,以00010010为例。
i=1,si=0i=1,s_i=0i=1,si=0时第一位要翻成1,这时第二位第三位不需要翻(因为和第一位一起都是0),需要去检查右边首次出现1的第四位,即s1(1)=s0(4)+ais_1(1)=s_0(4)+a_is1(1)=s0(4)+ai
i=2,3i=2,3i=2,3时同上。
i=4i=4i=4时不需要翻动。s1(4)=s1(5)s_1(4)=s_1(5)s1(4)=s1(5)
这样的话还需要从右往左维护右边首次出现1的位置。
计算后缀全改成0的方法也同上。

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef vector<int> vi;
typedef unsigned long long ull;

const int N = 200020;
char s[N];
ll p0[N];
ll flip[N];
ll s0[N], s1[N];
ll a[N];


void solve() {
	int n;
	scanf("%d", &n);
	scanf("%s", s + 1);
	for(int i = 1; i <= n; ++ i) 
		scanf("%lld", &a[i]);
	s[0] = '0';
	for(int i = 1; i <= n; ++ i) {
		flip[i] = s[i] == s[i - 1] ? flip[i - 1] : flip[i - 1] + 1;
		p0[i] = s[i] == s[i - 1] ? p0[i - 1] : p0[i - 1] + a[i];
	}
	int next1 = n + 1, next0 = n + 1;
	s1[n + 1] = 0, s0[n + 1] = 0;
	for(int i = n; i >= 1; -- i) {
		if(s[i] == '1') {
			s1[i] = s1[i + 1];
			s0[i] = s1[next0] + a[i];
			next1 = i;
		} else {
			s1[i] = s0[next1] + a[i];
			s0[i] = s0[i + 1];
			next0 = i;
		}
	}
	ll ans = 1ll << 60;
	for(int i = 0; i <= n; ++ i) {
		ll t = p0[i] + ((flip[i] & 1) ? s0[i + 1] : s1[i + 1]);
		ans = min(ans, t);
	}
	printf("%lld\n", ans);
}


int main(){
//	freopen("in.txt", "r", stdin);
	int t;
	scanf("%d", &t);
	while(t--) {
		solve();
	}
	return 0; 
}

F-Zeeman的异或数组

线性基板子题
第一个d[i]=0的位置就得到无法用基构造的整数1<<i
线性基和线性空间中的基概念非常类似,做的时候可以类比一下。

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef vector<int> vi;
typedef unsigned long long ull;

const int N = 500050;
ll d[64];
ll a[N];
int n;

void addx(ll x) {
	for(int i = 60; i >= 0; -- i) {
		if(x & (1ll << i)) {
			if(d[i]) 
				x ^= d[i];
			else {
				d[i] = x;
				break;
			}
		}
	}
}


void solve() {
	scanf("%d", &n);
	memset(d, 0, sizeof(d));
	for(int i = 1; i <= n; ++ i ){
		scanf("%lld", &a[i]);
		addx(a[i]);
	}
	for(int i = 0; i <= 60; ++ i) {
		if(d[i] == 0) {
			printf("%lld\n", 1ll << i);
			break;
		}
	}
}


int main(){
//	freopen("in.txt", "r", stdin);
	int t;
	scanf("%d", &t);
	while(t--) solve();
	return 0; 
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值