
推荐系统【技术细分】
文章平均质量分 70
推荐系统知识
博士僧小星
985博士研究生
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
人工智能|推荐系统——工业界的推荐系统之涨指标
三、涨指标的方法:排序模型五、涨指标的方法:特殊对待特殊人群六、涨指标的方法:利用交互行为。原创 2024-05-09 14:53:44 · 254 阅读 · 0 评论 -
人工智能|推荐系统——工业界的推荐系统之冷启动
UGC的物品冷启有哪些⼩红书上⽤户新发布的笔记。B站上⽤户新上传的视频。今⽇头条上作者新发布的⽂章。为什么要特殊对待新笔记?新笔记缺少与⽤户的交互,导致推荐的难度⼤、效果差。扶持新发布、低曝光的笔记,可以增强作者发布意愿。优化冷启的目标精准推荐:克服冷启的困难,把新笔记推荐给合适的⽤户,不引起⽤户反感。激励发布:流量向低曝光新笔记倾斜,激励作者发布。挖掘⾼潜:通过初期⼩流量的试探,找到⾼质量的笔记,给与流量倾斜。原创 2024-05-09 14:11:10 · 624 阅读 · 0 评论 -
人工智能|推荐系统——工业界的推荐系统之重排
基于物品属性标签基于物品向量表征 ⽤召回的双塔模型学到的物品向量(不好)原创 2024-05-08 13:42:37 · 343 阅读 · 0 评论 -
人工智能|推荐系统——工业界的推荐系统之序列建模
对LastN物品ID做embedding,得到 𝑛 个向量。把 𝑛 个向量取平均,作为⽤户的⼀种特征。适⽤于召回双塔模型、粗排三塔模型、精排模型。原创 2024-05-08 13:29:09 · 360 阅读 · 0 评论 -
人工智能|推荐系统——工业界的推荐系统之交叉
SENet 对离散特征做field-wise加权,如果有𝑚 个fields,那么权重向量是𝑚 维。FiBiNet可以理解为同时考虑了SENet 结合 Field 间特征交叉。之前提到过的召回、排序模型中的神经网络可以用任意网络结构;LHUC起源于语⾳识别,快⼿将LHUC应⽤在推荐精排,称作PPNet。深度交叉网络就是两个分支,一边是全连接,一边是交叉网络。线性模型预测是特征的加权和。交叉网络就是多个交叉层串起来的网络。可以通过矩阵分解减少模型参数量。Field 间特征交叉。原创 2024-05-06 10:16:41 · 488 阅读 · 3 评论 -
人工智能|推荐系统——工业界的推荐系统之排序
完播率通常和视频时长有关,不能直接把预估的完播率⽤到融分公式。训练时通常会遇到类别不平衡问题,可以考虑做采样。多目标有多个预估分数就可以有不同融合方式。进一步考虑对多个神经网络的输出进行加权。可以通过dropout的方式来解决极化。预测概率和实际是否交互求交叉熵损失。多目标模型就是要预测多个目标。几个专家就是放几个神经网络。视频完播用回归或分类都可以。通常做个调整再用到融分公式。双塔模型牺牲准确性换计算量。可以通过校准公式进行校准。精排模型的线上推理代价大。回顾一下推荐系统的链路。可能会出现极化的现象。原创 2024-05-06 09:36:10 · 362 阅读 · 0 评论 -
人工智能|推荐系统——工业界的推荐系统之召回
离散特征可以用Embedding Layers,连续特征可以归一化、分桶等处理。Swing额外考虑重合的⽤户是否来⾃⼀个⼩圈⼦,两个⽤户重合度⼤,则可能来⾃⼀个⼩圈⼦,权重降低。简单负样本可以是全体物品(考虑非均匀采样打压热门物品)或者Batch内负样本。⽤户兴趣动态变化,⽽物品特征相对稳定,事先存储物品向量𝐛,线上现算⽤户向量𝐚。困难负样本主要考虑被召回,但是被排序淘汰的样本。一个物品的两个向量可以通过一些特征变换得到。⽤索引,离线计算量⼤,线上计算量⼩。正样本的选择需要考虑冷门、热门物品。原创 2024-05-04 10:26:54 · 627 阅读 · 0 评论 -
人工智能|推荐系统——工业界的推荐系统之概要
但是随机分桶的问题在于无法做多个实验,因此通常考虑分层实验,同层互斥就是做的分桶,不同层正交可以避免不同实验之间的干扰,就可以做无数组实验。实验推全是逐步将新推荐策略应用到所有用户的过程,而反转实验是通过将部分用户回退到旧策略来评估新策略的有效性。粗排、精排会考虑用户特征、物品特征、统计特征来建模,同时考虑多个消费指标,然后得到一个最终的排序分数。通常会考虑用户的一些消费指标。原创 2024-05-02 23:41:55 · 324 阅读 · 0 评论 -
人工智能|推荐系统——推荐系统经典模型YouTubeDNN
我们可以把召回模型的结构分为三层。输入层:输入层总共有四种特征。用户看过视频的 Embedding(embedded video watches)用户搜索的关键词的 Embedding 向量(embedded search tokens)用户所在的地理位置的特征(geographic embedding)适用于冷启动用户基本特征(example age, gender)原创 2024-04-27 22:11:16 · 1142 阅读 · 0 评论 -
人工智能|推荐系统——推荐大模型最新进展
Embedding 已成为表示关于实体、概念和关联的复杂的信息的关键手段,并以简洁且有用的格式呈现。然而,它们通常难以直接进行解释。尽管下游任务利用这些压缩表示,但要进行有意义的解释通常需要使用降维或专门的机器学习可解释性方法进行可视化。本文解决了使这些嵌入更具解释性和广泛实用性的挑战,通过利用大语言模型(LLMs)直接与嵌入进行交互,将抽象向量转化为可理解的叙述。通过将嵌入注入LLMs,我们使复杂的嵌入数据可以进行查询和探索。原创 2024-04-27 21:56:52 · 1649 阅读 · 0 评论 -
人工智能|推荐系统——搜索引擎广告
随着人工智能应用的日益广泛,搜索引擎供应商越来越多地要求广告商使用基于机器学习的自动竞价策略。这样的自动决策系统让广告商对所使用的数据以及它们如何影响决策过程的结果一无所知。以前关于人工智能的文献缺乏对与人工智能系统相关的危险及其缺乏透明度的理解。针对这一问题,本文研究了搜索引擎广告中广告主竞价策略自动优化的内在风险。因此,所选服务公司的实证案例说明了数据可用性如何引发广告绩效的长期下降,以及搜索引擎广告绩效指标在数据稀缺事件前后的发展情况。原创 2024-03-29 11:04:42 · 1626 阅读 · 0 评论 -
人工智能|推荐系统——基于tensorflow的个性化电影推荐系统实战(有前端)
基于tensorflow的个性化电影推荐系统实战(有前端)原创 2024-02-07 13:13:34 · 2096 阅读 · 0 评论 -
图论|知识图谱——详解自下而上构建知识图谱全过程
图论|知识图谱——详解自下而上构建知识图谱全过程原创 2023-11-25 22:14:50 · 6154 阅读 · 0 评论 -
技术细分|推荐系统——推荐系统中的数据去偏方法
技术细分|推荐系统——推荐系统中的数据去偏方法原创 2023-11-23 16:02:06 · 810 阅读 · 0 评论 -
技术细分|推荐系统——推荐系统中的偏差
技术细分|推荐系统——推荐系统中的偏差原创 2023-11-23 15:38:43 · 488 阅读 · 0 评论 -
论文|翻译——行为数据挖掘(持续更新!)
1.作者简介【姓名】:赵玺【个人主页】:http://som.xjtu.edu.cn/info/1014/3587.htm【研究方向】:大数据驱动的行为理论、行为分析和仿真;基于大数据行为的决策支持;人工智能与深度学习;区块链2.近期学术论文[1]位置推荐[1]A complementing preference based method for locationr...原创 2020-05-07 23:53:51 · 634 阅读 · 0 评论 -
推荐系统 | 重排序 —— 贝叶斯个性化排序(Bayesian Personalized Ranking, BPR)
1.“排序推荐算法”分类2.贝叶斯个性化排序(Bayesian Personalized Ranking, BPR)2.1.应用场景传统的近邻协同过滤推荐算法的核心思想是基于现有“用户-商品评分矩阵”计算用户之间的相似度,并通过评分预测公式对整个矩阵中的缺失评分进行预测,并依据评分的高低对用户进行推荐,实践证明使用起来也很有效。但是,在千万级别的商品中用户感兴趣的商品仅仅是个位数...原创 2020-03-17 10:49:52 · 2359 阅读 · 0 评论 -
推荐系统 | 协同过滤 —— 矩阵降维SVD/SVD++
目录1.特征值分解(EVD)1.1.实对称矩阵(也可为方阵)1.2.一般矩阵2.奇异值分解(SVD)2.1.奇异值分解定义2.2.奇异值求解2.3.数学引例2.4.图像压缩应用(Python)2.5.协同过滤推荐系统中矩阵分解应用3.SVD++3.1. 增加偏执项的SVD3.2.SVD++奇异值分解(SVD)在数据降维中应用较多1.特征值分...原创 2020-03-07 12:20:53 · 1598 阅读 · 0 评论 -
假设检验 | 非参数假设检验 —— KS检验
1.概述KS(Kolmogorov-Smirnow)是一种非参数的统计检验方法,是针对连续分布的检验。这种检测常被用来应用于比较单样本是否符合某个已知分布(将样本数据的累计频数分布与特定理论分布相比较,如果两者间差距较小,则推断该样本取自某特定分布簇),双样本的KS检测比较两个数据集的累积分布(连续分布)的相似性。2.优缺点【优点】①KS检验与卡方检验相比(都采用实际频数与理...原创 2020-03-12 18:44:50 · 24197 阅读 · 0 评论 -
距离(相似度)计算方法
1.闵式距离又叫做闵可夫斯基距离,是欧氏空间中的一种测度,被看做是欧氏距离的一种推广,欧氏距离是闵可夫斯基距离的一种特殊情况。闵可夫斯基距离公式中,当p=2时,即为欧氏距离;当p=1时,即为曼哈顿距离;当时,即为切比雪夫距离。2.欧式距离欧几里得度量(euclidean metric)(也称欧氏距离)是一个通常采用的距离定义,指在m维空间中两个点之间的真实距离,或者...原创 2019-06-21 20:37:52 · 1861 阅读 · 0 评论