智能守恒_HengAI
AI技术公司CTO,帝国理工博士,北航讲席教授。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【图像理解进阶】遥感图像道路分割有哪些疑难点?
其中,遮挡导致的道路断裂(如建筑物阴影、树木覆盖)和视角差异引发的交叉区域误判(如透视变形、多车道交叉拓扑混淆)是两大核心瓶颈,直接导致传统分割模型在实际应用中精度大幅下降,成为制约地理信息自动化提取的关键问题。卫星/航空传感器的拍摄角度差异会引发道路交叉区域的几何变形(如十字交叉、T型交叉的边缘模糊),导致模型对交叉点的拓扑结构识别混乱。提升遥感图像道路分割精度的关键在于:通过遮挡感知建模解决断裂问题,通过拓扑约束强化交叉区域识别,通过数据扩充与模型架构优化提升复杂场景的泛化能力。原创 2025-07-31 20:30:00 · 164 阅读 · 0 评论 -
【图像理解进阶】如何把yolov11部署到高通8 elite平台上?
模型转换与优化:将YOLOv11转换为高通SNPE支持的格式量化处理:将FP32模型转换为INT8以提高速度并降低功耗利用SNPE SDK:调用高通NPU进行硬件加速多线程优化:利用CPU多核特性处理前后置任务。原创 2025-07-30 16:47:18 · 145 阅读 · 0 评论 -
【图像理解进阶】如何在自己的数据集上释放segment anything模型方案的潜力?
要在自己的数据集上使用Segment Anything Model (SAM)并充分发挥其潜力,需要结合模型特性、数据特点和具体任务需求。通过以上步骤,既能快速利用SAM的零样本能力处理新数据集,又能通过微调与工程优化适配特定任务,最大化模型潜力。实际应用中需根据数据规模、硬件条件和精度需求灵活调整策略。SAM的零样本性能强大,但在。原创 2025-07-26 22:03:56 · 155 阅读 · 0 评论 -
【图像理解进阶】如何对图像中的小区域进行细粒度的语义分割?
通过结合Transformer架构、多尺度特征融合、类别不平衡优化、数据增强和后处理技术,可显著提升小区域的分割精度。医学影像:采用S³-Mamba+课程学习+CRF后处理。遥感与工业检测:结合Swin Transformer+定向增强+Focal Loss。无标注数据:使用CUTS框架进行无监督预训练。同时,利用专用工具(如Segment Geospatial、Halcon)可快速实现从数据处理到结果可视化的全流程优化。原创 2025-07-25 22:25:04 · 316 阅读 · 0 评论 -
【图像理解进阶】如何优化视觉大模型的grounding性能?
优化视觉大模型的grounding性能需综合数据、模型、训练、评估全链路的创新。数据层面:通过多模态对齐、自训练与精细标注提升数据质量;模型层面:设计跨模态深度融合架构,结合prompt工程与任务统一策略;训练层面:利用自监督学习与渐进式训练增强泛化能力;效率层面:通过token压缩与硬件加速平衡性能与实时性。未来研究需进一步探索动态推理、人类交互及领域适配等前沿方向,推动视觉大模型在复杂场景下的可靠落地。原创 2025-07-24 17:09:25 · 131 阅读 · 0 评论 -
【图像理解进阶】如何进行小目标物体的检测?
数据上增强细节、模型上融合特征、训练上聚焦难例、后处理上优化匹配”。实际应用中需结合场景调整策略(如遥感小目标侧重高分辨率输入+FPN,密集人群小目标侧重Focal Loss+Soft-NMS),并通过量化分析(如小目标AP值)迭代优化。原创 2025-07-24 17:01:07 · 150 阅读 · 0 评论