
入门文献复现
文章平均质量分 91
Ai_Math
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
文献复现——A New Geometric Mean FMEA Method Based on Information Quality
实现了作者的模型,并且添加了简单的数据预处理:#作者提出了一个新的FMEA方法,主要是对原有的RPN计算方法改进#1、构建模糊评价矩阵,如果有 N个失效模式,那么就构建N×3的模糊评价矩阵#N行有N个失效模式FM,3列3个不同的指标,S O D#模糊评价矩阵的元素为(a,b,c,....)是专家对该指标的满意度评价#2、计算模糊矩阵中每个元素的广义信息质量,生成广义信息质量矩阵#3、对广义信息质量矩阵进行修正(qu_matrix/max(qu_matrix)),得到几何平均权重矩阵(0.3365原创 2020-11-06 09:32:46 · 697 阅读 · 1 评论 -
入门文献复现——Analyzing the degree of conflict among belief functions Weiru Liu
该Paper的作者提出了一种新的度量证据是否冲突的方法,度量标准是 前者就是Dempster规则中的冲突质量(1/(1-k)中的k)后者是the distance of betting commitment,我自己翻译为"赌博信度距离"首先,将不同的BBA进行 pignistic transform,得到专属的BetP然后做差,找到差值最大的代表这两个BBA的赌博信度距离。下面的代码就是求difBetp的。#基于pignistic transform证据冲突的度量标准#作者的度量指标为cf(原创 2020-10-21 13:41:52 · 690 阅读 · 2 评论 -
入门文献复现——Murphy C K——Combining belief functions when evidence conflicts
作者Murphy提出了综合平均法来组合多个BOE,大体的步骤如下:(1):将给定的BOE进行平均,获得各个BPA的平均质量averageMass。(2):利用Dempster的组合规则将(1)求得的平均质量进行组合,并且组合(n-1)次。n为BOE的个数。代码注解:因为当时没有足够的时间,所以aberageMass平均质量是直接给出的,例子就是采用的该Paper上的例子#1、先写出结果的形式x_result={"A":0,"A|B":0,"B":0,"Ω":0,"empty":0}#2、输入平均原创 2020-10-18 14:55:58 · 1630 阅读 · 3 评论 -
入门文献复现——Combining belief functions based on distance of evidence Deng Yonga,2, Shi WenKanga, Zhu Zhe
这个Paper结合BOE之间的距离的思想,对Murphy的方法进行了改进*代码注解:*虽然代码写的还是一如既往的臭,仅仅知识为了获得运行结果而写,但还是基本复现了Paper。#基于加权质量的平均法#1. 计算BOE之间的距离d(m_i,m_j)##1.1. 计算m_i∪m_j##1.2. 利用并集的基数构建向量矩阵 vector_m_i,vector_m_j##1.3. 构建D=矩阵,大小为|m_i∪m_j|*|m_i∪m_j|##1.4. 利用公式求d(m_i,m_j)#2. 利用上面的原创 2020-10-18 14:48:02 · 932 阅读 · 12 评论 -
入门文献复现——Belief function combination and conflict management
为了更好的读懂论文,一边阅读一边尝试复现论文在这篇论文中,作者提出了基于加权因子w(A,m) 的通用框架。将此加权因子的计算分为三类。1、直接定值:Yager与Semts的融合规则适用2、计算加权因子:Dempster与Dubios&Prade的融合规则适用3、自动学习加权因子1.融于框架后的Dempster融合规则1.1.这里就先不详细写推导过程,本博文主要写的是程序复现这一部分#基于通用框架的改进的Dempster方法#本程序并不完善,过于冗余##如果想增加(减少)数据源的原创 2020-10-11 11:45:00 · 1587 阅读 · 2 评论