Prophet 时间序列预测算法

一、背景

时间序列预测是一种预测未来数据的方法,对于时间序列的分析,我们可以采用传统的统计学方法,例如 ARIMA、Exponential Smoothing等,这些方法通过分析过去的数据建立模型来预测未来的趋势,但是这些方法有一个限制就是必须满足某些假设条件,例如数据的稳定性,缺失值的处理等等。

因此,近年来出现了一些新的时间序列预测方法,例如 Facebook开源的 Prophet,它是一种具有高度灵活性的时间序列预测算法,它能够处理数据的不稳定性,缺失值,异常值等等,同时还能够自动检测周期性的趋势和节假日的影响,可以应用于多种行业和领域。


二、Prophet 的基本原理

Prophet 的基本原理是将时间序列分解成趋势项、季节项和假日项,并在此基础上使用加法模型进行预测。具体地,假设时间序列 y(t) 由以下三个部分组成:

  • 趋势项 g(t):描述时间序列的长期趋势,通常采用带有自动回归项和季节项的分段线性模型来拟合。
  • 季节项 s(t):描述时间序列的周期性变化,通常采用傅里叶级数来拟合。
  • 假日项 h(t):描述时间序列中的异常事件(如节假日、促销等),通常采用自定义二进制变量来表示。
    将趋势项、季节项和假日项相加,得到时间序列的预测值:

y(t) = g(t) + s(t) + h(t) + ε(t)

其中,ε(t) 是误差项,通常假定为正态分布。


三、Prophet 的使用方法

1、环境准备

首先,我们需要安装 Prophet 和其所依赖的 Python 包。可以通过以下命令进行安装:

pip install fbprophet numpy pandas matplotlib
2、数据准备

为了进行销售量预测,我们需要先准备一些历史销售数据。这里我们使用一个示例数据集 sales.csv,包含日期和销售量两列。数据集可以通过以下链接下载:
https://raw.githubusercontent.com/facebook/prophet/master/examples/example_retail_sales.csv

我们可以使用 Pandas 库读取数据集:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值