马尔可夫毯(Markov Blanket)

马尔可夫毯是概率图模型中的一个重要概念,它是一个随机变量的局部边界,确保在给定该边界的情况下,变量与其他变量独立。在贝叶斯网络中,马尔可夫毯包括一个节点的父节点、子节点和配偶节点,简化了特征选择的过程。通过对马尔可夫毯的理解,可以有效地进行特征选择和减少数据冗余。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

马尔可夫毯(Markov Blanket)

        最近接触到马尔可夫毯(MarkovBlanket)这个概念,发现网上资料不多,通俗易懂的解释甚少,查了一些资料后,决定写一个总结。

        提到马尔可夫毯,就会有一堆从名字上看很相近的概念,比如马尔可夫链(Markov Chain, MC)、隐马尔可夫模型(Hidden Markov Model, HMM)、马尔可夫随机场(MarkovRandom Field, MRF)等等。其实,马尔可夫毯与这些概念不同,它是一个局部的概念,而不是一个整体模型级别的概念。以下内容主要参考【何宪. 基于贝叶斯网络的马尔可夫毯发现算法研究[D]. 电子科技大学, 2012.】,更多内容请参阅原文献。

        首先看马尔可夫毯的定义

 

这种纯符号的定义看起来有些抽象,形象一点说,把一个随机变量全集U分成互斥的三部分,变量X以及集合A和B,三个子集没有交集,并集即为全集U;如果说给定集合A时,变量X与集合B没有任何关系,则称集合A为变量X的马尔可夫毯。在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值