AI创作音乐主要有以下几种方式:
基于深度学习的生成模型
- 深度神经网络:通过大量的音乐数据训练,让AI学习音乐的结构、旋律、和声、节奏等特征。如Transformer架构,其注意力机制可捕捉跨小节的旋律关联性,能生成具有长期依赖性的音乐序列。
- 生成对抗网络(GAN):包含生成器和判别器,生成器负责生成音乐样本,判别器判断生成的音乐是否真实。两者相互对抗、不断优化,使生成器生成更逼真的音乐。
- 变分自编码器(VAE):能学习音乐数据的潜在分布,将音乐编码为低维向量表示,再从潜在空间中采样生成新的音乐,可生成具有多样性的音乐作品。
基于规则和算法的创作
- 符号音乐表示:将音乐用符号表示,如音符、节拍、和弦等,通过编写规则和算法来操作这些符号,实现音乐创作。如设定和弦进行规则、旋律走向规则等,让AI按照规则生成音乐。
- 遗传算法:模拟生物进化过程,将音乐的各个元素如旋律片段、节奏型等作为基因,通过选择、交叉、变异等操作,生成新的音乐个体,经过多代进化得到满意的音乐作品。
基于交互和引导的创作
- 文本输入引导:用户输入对音乐的描述,如风格、情感、主题等,AI利用自然语言处理技术理解文本,将其转化为音乐元素,进而生成音乐。如输入“欢快的流行音乐,适合在派对上播放”,AI就会生成相应风格的音乐。
- 旋律输入引导:用户输入一段旋律片段,AI以此为基础进行扩展、变奏、和声配置等,创作出完整的音乐作品。
- 情感和场景输入引导:AI通过情感识别模块,将用户输入的情感或场景转化为对应的音乐元素。比如输入“森林中的清晨”,系统会匹配清新的旋律、鸟鸣音效与适中的节拍。