自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(34)
  • 收藏
  • 关注

原创 用yolo12实现停车场车辆检测

用python调用摄像机实时视频,使用yolo12实现停车场空车位数量统计,并输出车位编号。硬件设备使用nvidia的orin avix。文章详细解读了软件的功能模块和代码实现。并给出了python的代码解释,方便读者移植。文中强调了TensorRT的优化,cudu的优化、多线程的优化等解决方案。

2025-03-02 21:38:52 1185

原创 人工智能技术之GAN架构

生成对抗网络(GAN)通过生成器与判别器的对抗训练实现数据生成,无需显式建模概率分布。其核心是最小最大博弈目标函数,当生成与真实数据分布一致时达到纳什均衡。PyTorch实现包含生成器(将噪声映射到数据空间)和判别器(区分真假数据)的交替训练,使用二元交叉熵损失和Adam优化器。关键改进方向包括:采用Wasserstein距离解决模式崩溃、DCGAN提升稳定性、cGAN实现条件生成控制。GAN能有效生成高维复杂数据,在图像生成等领域具有广泛应用前景。

2025-08-04 11:19:02 159

原创 人工智能技术之CNN架构

卷积神经网络(CNN)是一种专用于处理网格数据的深度学习模型,在计算机视觉领域应用广泛。其核心优势在于通过卷积层自动学习局部特征,结合池化层降维,实现高效的特征提取。技术特点包括:卷积运算的参数共享机制、ReLU激活函数引入非线性、全连接层完成最终分类。典型CNN架构由卷积-池化堆叠组成,配合Dropout和Batch Normalization提升性能。文中提供了基于TensorFlow的MNIST手写识别代码示例,展示了两层卷积+池化结构,测试准确率达98%以上。该架构可扩展至更复杂视觉任务,是图像处理

2025-08-04 11:05:20 217

原创 人工智能技术之TensorFlow架构

TensorFlow是由Google开发的开源机器学习框架,采用数据流图(节点为运算、边为张量)的架构设计。核心特性包括:支持异构计算(CPU/GPU/TPU)、自动微分机制、模块化设计(核心C++引擎+多语言API)和分布式训练能力。通过示例展示其实现卷积神经网络进行MNIST分类的完整流程,凸显计算图自动优化执行、硬件加速等优势。该框架通过抽象计算图实现算法与硬件的解耦,成为工业级AI应用的首选平台。

2025-08-04 10:59:03 232

原创 人工智能架构都有哪些?

人工智能领域包含多种重要架构:CNN擅长图像处理,通过卷积和池化提取特征;RNN及其变种(LSTM、GRU)处理序列数据;自编码器用于降维和生成;GAN通过对抗训练产生逼真数据;强化学习模型(如DQN)解决决策问题。此外,注意力机制、传统机器学习模型和图神经网络各有所长。这些架构在计算机视觉、自然语言处理等不同领域发挥着关键作用,常结合使用以满足特定需求。

2025-08-04 10:54:35 393

原创 人工智能技术之Transformer架构

摘要:Transformer是2017年提出的革命性深度学习架构,采用自注意力机制替代传统RNN,解决了长序列依赖问题。核心组件包括:多头自注意力模块(通过Q/K/V矩阵计算权重)、位置编码(添加序列顺序信息)、前馈网络和残差连接。该架构包含编码器(处理输入)和解码器(生成输出)两部分,支持并行计算,显著提升了训练效率和性能。Transformer已成为BERT、GPT等主流AI模型的基础,广泛应用于NLP、计算机视觉和多模态任务。其数学可靠性(如注意力公式)和可扩展性推动了AI技术的快速发展。

2025-08-04 09:02:55 187

原创 Transformer架构与YOLO架构的本质区别

摘要:Transformer和YOLO是AI领域的两种重要架构,设计目标和应用场景存在本质差异。Transformer(2017年提出)基于自注意力机制,擅长处理序列数据(如NLP任务),通过编码器-解码器结构捕捉长距离依赖关系;YOLO(2016年提出)采用CNN架构,专为实时目标检测优化,通过网格划分和回归预测实现高效物体识别。前者侧重全局上下文建模,后者强调局部特征提取和实时性能。选择取决于具体任务需求,虽然存在交叉应用(如Vision Transformer),但核心设计理念截然不同。

2025-08-04 08:55:55 108

原创 YOLO权重转ONNX实操流程

YOLO权重转ONNX实操流程摘要:本文详细介绍了将YOLO模型权重转换为ONNX格式的完整步骤。操作环境要求Python 3.7+及关键依赖库。转换流程包括:1)环境准备(安装PyTorch、ONNX等依赖);2)执行转换脚本(加载PyTorch模型并导出为ONNX格式);3)验证转换结果(测试ONNX模型推理)。注意事项涵盖输入尺寸设置、动态维度处理、OPset版本选择等问题解决方案。该转换方法支持YOLOv5等主流版本,转换成功率超过98%。文中还提供了常见错误处理技巧,如调整opset版本、处理形状

2025-08-01 17:15:09 177

原创 基于无人机视角的城市游商管理平台解决方案

“基于无人机视角的城市游商管理平台”的设计与实现。该平台的核心是优化计算机视觉算法,实现秒级(即处理时间在1秒以内)的游商目标发现与处置能力,同时提供完整的软硬件整合方案。公司具备整体解决方案能力,欢迎留言区交流。

2025-08-01 10:38:49 14

原创 城市垃圾无人机巡检自主发现实现路径

本文提出一种基于多光谱感知与自主巡航的垃圾巡检系统,通过无人机搭载传感器实现垃圾成分识别与三维建模。系统采用改进A*算法规划路径,结合边缘计算实现实时检测与动态预警,在深圳项目中验证其效率达人工巡检的2.8倍。关键技术包括分布式协同算法和抗干扰通信技术,建议初期采用人机协同模式逐步过渡至全自动巡检。该系统显著提升垃圾识别覆盖率和响应速度,同时降低60%以上成本。

2025-08-01 10:27:01 117

原创 本地化部署 DeepSeek(Ubuntu & Windows 平台)

DeepSeek本地化部署指南摘要:本文提供Ubuntu和Windows平台部署DeepSeek-7B模型的完整流程。硬件要求包括≥16GB显存的NVIDIA GPU、32GB内存和100GB存储。部署步骤涵盖:1)安装Python3.8+、PyTorch2.0和CUDA11.8;2)创建虚拟环境并安装HuggingFace库;3)下载15GB的DeepSeek-7B模型;4)编写推理脚本实现文本生成。特别说明:Windows需额外安装Git LFS和VC++运行时,显存不足时可启用4-bit量化。首次运行

2025-08-01 10:21:47 8

原创 数字虚拟人开源工具深度分析

摘要:本文深入分析数字虚拟人开源工具,聚焦Blender、OpenFace、Rasa和MycroftAI四款主流工具,从功能、优缺点、适用场景等维度进行对比。Blender擅长3D建模与渲染,OpenFace专精面部动画,Rasa提供对话AI支持,MycroftAI则侧重语音交互。文章提出整合建议(如Blender+OpenFace+Rasa构建全栈方案),并针对教育、娱乐、客服等场景给出选型指导。开源工具可降低开发门槛,但需权衡性能与维护成本,未来AI融合将进一步提升虚拟人逼真度。选择时需根据项目需求匹配

2025-08-01 09:35:19 637

原创 Agent开发路径方法:系统化框架与关键技术

本文提出分层递进的智能体开发框架,覆盖需求定义、架构设计、实现优化和验证部署全周期。核心路径包括:形式化建模任务空间与约束条件;选择反应式/慎思式认知架构;集成策略优化与多智能体协作算法;建立量化评估体系确保鲁棒性。研究强调需求驱动建模与架构算法协同优化,指出未来应聚焦元学习框架实现跨领域智能迁移,最终达成渐进最优目标。开发过程需遵循"定义-设计-实现-验证"闭环,结合强化学习实现持续进化。

2025-08-01 09:29:08 725

原创 数字虚拟人实现技术解析

数字虚拟人技术解析:从建模到AI驱动的完整实现 数字虚拟人是融合多学科技术的复杂系统,其实现过程包含五个关键环节:1)3D建模构建基础外观,涉及几何建模、纹理贴图和骨骼绑定;2)动画技术实现自然运动,包含关键帧动画、动作捕捉和表情控制;3)语音合成技术使虚拟人发声,涵盖TTS和口型同步;4)AI技术增强交互能力,包括NLP、机器学习和情感识别;5)实时渲染技术实现最终展示。当前技术已能实现较自然的虚拟人表现,但提升真实感与降低计算成本仍是主要挑战。该技术正广泛应用于娱乐、教育等领域,未来将随深度学习发展持续

2025-08-01 09:13:40 848

原创 虚拟数字人技术对客服行业的冲击分析

虚拟数字人技术正在重塑客服行业格局。该技术通过AI驱动的聊天机器人和语音助手显著提升服务效率(响应时间≤2秒)并降低人力成本(节省30%-50%),同时实现个性化服务。但同时也带来就业冲击(预计2025年减少85万个岗位)、技术局限性(复杂场景错误率10%)和数据安全风险。当前行业正向"人机协作"模式转型,未来需结合情感AI升级和政策支持实现平衡发展。该技术已实现产品化应用,可批量生产虚拟人系统满足各类服务需求。

2025-08-01 09:07:13 323

原创 密闭空间无信标定位与导航技术综述

本文综述了密闭空间无信标定位与导航技术,重点分析了其核心方法(惯性导航、视觉SLAM等)、国内外发展差异及实际应用可行性。国内凭借成本优势和政策支持在应用层面领先,但在核心技术研发上仍依赖国外;国外技术先进但成本高昂。通过矿井救援机器人案例验证了该技术的实用价值,指出未来发展方向在于加强硬件自主创新和AI融合。作者已成功开发地下车库定位系统,展示了该技术的工程化潜力。

2025-08-01 09:01:47 660

原创 适老型智能陪诊系统构建思路

摘要:本文提出一种基于DeepSeek AI的智能陪诊系统,通过三层架构实现老年人就医全流程自动化。系统采用Transformer模型精准理解老人意图(准确率≥95%),通过标准化API安全对接医院数据,实现挂号、导航、缴费等核心功能。关键技术包括NLP意图识别、实时数据同步(响应时间≤1秒)和智能调度算法(如排队论优化)。系统可缩短50%就医时间,支持语音交互和药品配送,同时采用AES-256加密保障数据安全。实施建议从试点开始,逐步解决隐私保护和模型偏差等问题。

2025-07-31 09:05:10 487

原创 构建旅行规划智能体方案(基于Dify平台)

摘要:本文提出基于Dify平台的智能旅行规划方案,包含多维度需求采集(目的地、预算、时间、兴趣标签)和智能规划引擎,通过遗传算法优化行程,集成地图导航、酒店预订等API实现动态调整。方案支持个性化权重配置,3分钟内生成准确率>85%的行程,具备10+语言交互能力,并通过用户反馈持续优化。部署方式涵盖Web端、微信小程序和API服务。

2025-07-31 08:47:28 246

原创 用n8n构造旅行规划智能体的思路

摘要:本文介绍如何使用n8n工作流自动化工具构建旅行规划智能系统。系统通过n8n连接多个模块实现端到端自动化:输入处理(语音/文本转换)、意图理解(NLP分析)、数据搜索(调用API获取实时旅游信息)、策略生成(定制行程)、授权预定(可选)和输出生成(攻略文档和语音讲解)。详细说明了各模块在n8n中的实现方法,包括节点配置、API集成和数据处理流程,并强调隐私安全、成本控制和测试优化等注意事项,为构建可视化智能工作流提供完整指导方案。

2025-07-31 08:44:28 630

原创 人类情绪陪伴智能体的研发思路:基于DeepSeek提升机器人的人机共情能力

本方案提出基于DeepSeek大语言模型的人类情绪陪伴智能体解决方案,通过多模态情绪识别和个性化响应实现人机共情。系统采用分层架构设计:输入层整合文本、语音和视觉数据;处理层部署DeepSeek核心引擎,结合情感分类器实现情绪分析;输出层提供多模态情感反馈。硬件采用边缘计算架构,确保实时响应和隐私保护。方案创新性地将心理学理论与AI技术结合,量化情绪状态并优化响应策略,可应用于心理健康、老年陪伴等领域。研发周期6-12个月,强调模块化设计和伦理合规性,为情感计算领域提供实用化框架。

2025-07-30 12:00:13 508

原创 游戏智能体的研发思路:基于DeepSeek理解游戏玩法并提供全程陪伴与辅助

摘要:游戏智能体研发基于DeepSeek模型,通过四个阶段提升玩家体验:1)玩法理解:利用NLP和强化学习解析游戏机制;2)陪伴功能:结合情感分析和多模态技术实现自然交互;3)辅助能力:开发实时推理引擎提供策略建议;4)体验优化:采用个性化推荐和反馈机制。该方案采用模块化设计,强调实时性、平衡性和隐私保护,从小规模原型逐步扩展,最终实现智能陪伴与高效辅助的融合,提升游戏粘性和商业价值。(149字)

2025-07-30 11:50:57 720

原创 利用大模型构建旅行规划智能体的思考

摘要:本文提出构建基于大模型的旅行规划智能体,通过整合交通、景区、酒店等开放数据接口,实现个性化一键旅行。系统采用分层架构设计,包括用户交互层、数据整合层、优化引擎层和个性化推荐层,利用大模型处理自然语言输入并生成结构化行程方案。关键技术包括预训练模型微调、多源API集成和多目标优化算法。主要挑战涉及数据实时性、计算效率和隐私保护,可通过缓存机制、分布式计算和数据加密解决。该方案能显著提升旅行规划效率(成本降低20%,时间节省15%),未来可扩展至多模态交互和增强现实导航。

2025-07-30 11:47:21 1555

原创 传统导航与DeepSeek技术融合实现导航智能体的技术方案

在现代出行中,传统导航系统(如基于GPS的定位和路径规划)已无法完全满足日益增长的智能化需求。通过将DeepSeek技术(一种先进的人工智能模型)与传统导航融合,我们可以构建一个“导航智能体”,实现更高效、个性化和安全的出行体验。以下方案将深入分析功能需求点,并详细阐述技术实现方式,确保满足人类出行的核心智能化需求。

2025-07-30 11:29:21 679

原创 机器视觉模型与DeepSeek大语言模型的融合发展路径

本文系统探讨了多模态人工智能中计算机视觉(CV)与自然语言处理(NLP)的融合路径。重点分析了视觉Transformer(ViT)和DeepSeek大语言模型的核心架构,提出了特征空间对齐、联合训练框架和认知协同三大融合路径。文章展示了具身智能、医疗影像分析等前沿应用场景,并指出模态鸿沟、计算效率等关键挑战。未来发展方向包括神经符号融合、动态计算优化等,旨在推动通用人工智能向多模态、可解释的方向发展。研究通过CLIP、Flamingo等代表性模型,为构建"感知-认知-决策"闭环系统提供了

2025-07-30 11:20:52 722

原创 DeepSeek在食品加工行业的应用解析

DeepSeek在食品加工行业的应用能显著提升效率、安全和可持续性,通过AI解决核心痛点。从问题分析到代码集成,本解析提供了完整框架。实际部署时,建议从小规模试点开始(如单条生产线),逐步扩展到全厂。如果您有具体场景需求,可以给我留言,我们可进一步探讨优化方案。

2025-07-30 11:10:42 540

原创 智能汽车座椅与DeepSeek的融合技术解析

摘要:智能汽车座椅与DeepSeek边缘计算技术融合方案实现了从被动调节到主动关怀的突破。传统座椅依赖云端处理导致延迟高(>500ms)、功能单一,而新方案采用4TOPS算力的边缘计算模组,支持多模态数据融合,响应时间<50ms。通过16点压力传感器和毫米波生命体征监测,实现腰椎压力动态调节、疲劳度分级预警等功能,平均功耗仅12W。实测显示可降低40%长途驾驶疲劳度和28%腰椎负荷,具备车规级安全认证。该方案将座椅升级为具有持续学习能力的"数字工程师",重新定义了智能座舱交互

2025-07-30 10:58:02 873

原创 本地化部署数据科学与智能体技术加速企业智能化改造综述

本地化智能体系正成为企业数字化转型的"新基建",通过构建自主可控的技术生态,企业可在保障数据主权的前提下,释放智能技术的最大效能。随着边缘计算芯片算力突破及联邦学习框架成熟,2026年有望实现85%的规上企业完成智能体技术部署。

2025-07-30 10:51:53 386

原创 DeepSeek在汽车制造行业的应用方案

摘要: DeepSeek作为大语言模型,通过代码生成与自动化技术优化汽车制造业的三大核心场景: 生产数据分析:自动生成Python脚本分析传感器数据,检测异常并生成可视化报告,减少90%人工时间,异常检测准确率达95%。 供应链优化:利用线性规划算法(PuLP库)最小化库存成本,落地案例显示库存成本降低18%,求解时间不足1秒。 质检日志分析:基于NLP聚类(TF-IDF+K-means)自动识别缺陷模式,缺陷识别速度提升5倍,报告生成时间从2小时缩短至10分钟。 所有方案均通过真实案例验证,支持快速集成至

2025-07-30 10:48:55 587

原创 大模型在医院本地部署与应用方案

医院本地部署大模型方案聚焦医疗场景需求,通过数据安全、实时响应和业务定制三大核心优势解决行业痛点。方案涵盖10个典型应用场景,包括智能分诊(误诊率降至5%)、影像诊断(效率提升50%)和药物检查(不良反应减少90%),均基于协和、瑞金等三甲医院真实案例。实施路径强调与HIS/EHR系统融合,预计可降低25%运维成本。未来将向预测性健康管理和全流程自动化发展,推动医院向智能医疗中心转型,需同步解决伦理监管和持续培训等挑战。建议从分诊和诊断辅助场景先行试点。

2025-07-25 10:43:02 675

原创 基因预测大模型的对比分析

本文系统综述了基因预测大模型的算法、工具及应用。基于Transformer的DNABERT和HyenaDNA擅长序列分析,GNN模型如DeepVariant-NG适合变异检测,多模态模型Enformer整合多组学数据。比较显示各模型在输入类型、输出任务和数据需求上存在显著差异,如DNABERT轻量化而HyenaDNA支持长序列处理。文章以DNABERT为例演示了安装、数据准备和模型微调流程。未来发展方向包括优化计算效率、降低使用门槛及拓展合成生物学应用。

2025-07-25 01:31:51 727

原创 AI助力个人开发:7天完成医疗文献检索小程序

一位开发者借助本地部署的AI大模型,仅用7天业余时间独立完成了医疗文献检索微信小程序的开发。该小程序实现了PubMed文献检索、中英文互译、综述生成及Word导出功能。开发者利用AI完成了从架构设计、代码编写到UI设计的全流程:通过自然语言交互获取开发指导,自动生成小程序目录结构和页面代码,包括科技感UI组件和后台服务接口。整个过程展示了AI如何将复杂的技术鸿沟转化为可控的开发流程,验证了"AI+个人开发者"的新型软件开发模式可行性。开发者认为,AI不会取代程序员,未来的程序员将带领AI团队协同开发。

2025-07-08 17:23:13 908 1

原创 DS企业级解决方案

摘要:Ubuntu22.04环境下部署大模型运行框架,Docker和WebUI,代码一步步指导您完成私有化部署大模型。

2025-07-07 17:57:04 915

原创 如何建立一个可以自动从pubmed检索指定的数据并填充到本地数据库的工具?

要建立一个可以自动从PubMed检索指定数据并填充到本地数据库的工具,你需要结合编程、API使用和数据库管理的技术。假设你已经熟悉基础的E-Utils(如ESearch、EFetch)操作,我将重点介绍更复杂的功能、优化技巧和高级用例。API使用政策:遵守NCBI的E-Utils使用政策,包括请求频率限制(默认每秒3次,API密钥可增加到10次/秒)。你需要明确你要检索哪些数据(例如,特定主题的文章、某段时间内的文章、特定作者的文章等),以便构造合适的查询。根据你需要存储的数据,设计本地数据库的表结构。

2025-04-12 12:34:13 1021

原创 DeepSeek独立部署对垂直行业影响力分析

Deepseek 的本地部署在教育(个性化学习)、医疗(慢性病管理)、烟草(新品开发)、政府(灾害预警)、银行(欺诈检测)和制造业(设备维护)中展现了多样化应用场景。

2025-03-06 23:08:55 753

onnxruntime_gpu-1.17.0-cp38-cp38-linux_aarch64

onnxruntime_gpu-1.17.0-cp38-cp38-linux_aarch64

2025-03-10

ffmpeg7.1-full

ffmpeg7.1-full

2025-03-02

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除