前言
将 Transformer 与轻量级多层感知 (MLP) 解码器相结合,表现SOTA!性能优于SETR、Auto-Deeplab和OCRNet等网络,代码即将开源!
注1:文末附【视觉Transformer】交流群
想看更多CVPR 2021论文和开源项目可以点击:
SegFormer
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
- 作者单位:香港大学, 南京大学, NVIDIA, Caltech
- 代码:https://github.com/NVlabs/SegFormer
- 论文:https://arxiv.org/abs/2105.15203
我们提出了 SegFormer,这是一种简单、高效但功能强大的语义分割框架,它将 Transformer 与轻量级多层感知 (MLP) 解码器相结合。
SegFormer 有两个吸引人的特性:
- SegFormer 包含一个新颖的分层结构的 Transformer 编码器(Hierarchical Transform