基于SAM的超强医学影像分割模型!

本文探讨了人工智能在医学影像领域的应用,如超强模型、标注工具和Med-PaLM技术的升级,减轻医生工作负担并提升诊断效率。同时,文章介绍了通用医学智能的发展趋势和课程,以及热门的论文写作方向,强调了AI在医疗决策和数据分析中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在实际应用中,医学影像的主要问题有:受限于成像设备的原理与技术;手工阅片通常只能做到定性,很多细微的、定量的改变用肉眼无法判断;人工阅片耗费医生很多的时间和精力,而且很难做到大范围的确诊。

而人工智能的引入则能够有效解决部分问题,例如:

▪Junde Wu团队基于SAM的超强医学影像分割模型

▪英伟达基于SAM提出医学图像标注效率神器

▪谷歌医疗大模型Med-PaLM 2重磅升级,甚至达到了专家水准;不难想象,医学AI的未来向着通用医学智能(GMAI)发展!

02021e0bd69a52f9840f494cadb9e56f.jpeg

谷歌揭秘了Med-PaLM技术,研究已登上了Nature

随着深度学习技术的发展,AI医学影像的适用模式、覆盖病种和应用场景不断丰富,既减轻了临床医师的诊疗负担,又能缓解医保支付压力。AI医学影像产业已经步入了高速发展的轨道。

我们邀请到沃恩智慧联合创始人,约翰·霍普金斯大学博士,多个顶会期刊审稿人Paul老师为大家带来——通用医疗智能AI新里程,和大家精讲医学AI的未来潜力与方向!

扫码参与课程
免费领13个医学图像AI入门项目及代码

12f1f531d28328acb0fbecefd320d6ed.png

886ba4eeadcff71428c9657a875d7bc6.jpeg

4d0577ea173f06702e18e210c42e3dca.jpeg

c280adec0280fd1522913d288bd75261.png

1

讲师介绍:Paul老师

b0857164be9b40d5188aacc476f480d4.png

▪沃恩智慧联合创始人
▪约翰·霍普金斯大学博士
▪30+篇SCI1区/CCF A/B类
▪Chun-Tsung Scholar
▪18个AI顶会和期刊审稿人
▪可指导CV、NLP、AGI大模型等

d73098f821fa3a7c8b40f5489e8e11ed.png

4

课程大纲

9df303a0df46eba6b28013bd1569d446.png

第1节:AIGC+医学图像的火花 

1、扩散模型基础

2、医学场景下的扩散模型 

第2节:大模型时代下的医学图像研究 

1、Segment Anything + 医学图像

2、LLM + 医学图像 

第3节:医学AI的未来:通用医学智能 

1、AGI

2、Medical Artificial General Intelligence 

e268c93d76008327f84255281dcb0ece.png

fdf03afdcc19155a09a605690b8ebf36.png

扫码参与课程
免费领13个医学图像AI入门项目及代码

eb78cd15be9c2178da47de7c2093a17f.png

50421fbe025ed652c698141cefcf52e2.jpeg

1190fc71e8ed8c6b50218d74ab723f23.png

在不久的将来,医学影像人工智能的创新成果能够更好地提升诊疗水平、服务患者。如此看来,AI医疗顶会的热门论文方向绝不容错过,下面就提供几个热门写作方向:

·临床决策支持

·生物医学数据挖掘

·智能健康监护

·医疗影像自动分析

·治疗方案开发

90b51666ca0c42d9074f9aa4b3e614ff.png

作为一个科研小白,怎么发表一篇相关的优质论文?

为了论文,大家都在努力的设计新网络、新策略、新training算法,只要能够在某一问题上做到一个很好的performance,论文就水到渠成。而想要快速达到,来自前辈的指点不可或缺。

一个好的指导老师的作用是,没有课题,能够结合所在课题组具体情况,结合最近热门研究方向,帮你规划课题,如果有了课题而缺少创新方向,老师能够快速帮你找到几种切入点,几种框架,甚至连需要读哪些文献都帮你想好了......

扫码参与课程
免费领13个医学图像AI入门项目及代码

12bcb71b9c8ea13ecfce92d59abea0c3.png

文末福利

给大家送一波大福利!我整理了100节计算机全方向必学课程,包含CV&NLP&论文写作经典课程,限时免费领!

9c4c89595f86562a4da0d597c7dbd2a3.jpeg

b2ca2293e06de67c75b5d3b6f5c9bee5.jpeg

f5c61f412be2d0198944e00d4fa57af8.png

立即扫码

免费领沃恩智慧创始人精品系列课程

-END-

### 基于SAM算法的医学图像分割技术及应用 #### ProtoSAM - 单次医学图像分割的基础模型 ProtoSAM 提出了单次学习框架下的医学图像分割解决方案,利用基础模型实现了高效的一次性分割能力。该方法通过引入原型网络来捕捉不同类别之间的相似性和差异性,在少量标注样本的情况下也能获得良好的泛化性能[^1]。 ```python import torch from protosam import ProtoSAM def perform_segmentation(image, model_path='path/to/protosam.pth'): device = 'cuda' if torch.cuda.is_available() else 'cpu' # 加载预训练好的ProtoSAM模型 proto_sam = ProtoSAM().to(device) checkpoint = torch.load(model_path, map_location=device) proto_sam.load_state_dict(checkpoint['model']) with torch.no_grad(): output_mask = proto_sam.predict(image) return output_mask.cpu().numpy() ``` #### 医疗 SAM 适配器的应用 为了更好地应用于医学场景,研究人员设计了专门针对医学数据特点优化过的 Medical SAM Adapter 。此适配器不仅保留了原始 SAM 架构的优点,还特别增强了对于低对比度、复杂背景条件下目标区域识别的能力。通过对公开可用的数据集进行迁移学习训练,使得最终得到的 MedSAM 可以更精准地完成多种类型的医学影像分析任务[^2]。 #### MedSAM 登上 Nature 的意义 MedSAM 成功登上了国际顶级期刊《自然》杂志封面文章,标志着基于 SAM 技术路线在处理实际临床问题方面取得了实质性进展。文中介绍了一套简便而有效的微调策略,允许使用者仅需极少量标记样本来调整参数设置即可达到理想效果;同时证明了经过适当改造后的通用视觉理解平台同样可以很好地服务于专业领域内的特殊需求——即高质量地解析各类人体内部器官结构特征并给出精确边界描述[^3]。 #### Segment Anything 模型简介及其潜力 由 Meta 开发团队推出的 SegmentAnything 是一款具有开创性的计算机视觉工具包,旨在解决大规模无监督条件下的实例级语义分割难题。其核心优势体现在强大的跨模态表征能力和快速推理速度之上。当被迁移到生物医学工程方向时,则展现出非凡的价值创造空间:无论是辅助医生制定手术规划方案还是加速新型药物研发进程都离不开这样一套智能化程度更高的诊断支持体系作为支撑[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值