Transformer模型-Normalization归一化的简明介绍:将特征转换为可比较尺度的过程,一般是[0,1] or [-1,1]之间

 背景

一般而言,Normalization归一化是将特征转换为可比较尺度的过程。有许多方法可以对特征进行归一化

例如:最小-最大特征缩放

最小-最大特征缩放将值转换到[0,1]的范围内。这也被称为基于单位的归一化。可以使用以下方程进行计算:

该方程的顶部将每个值减去X_min;当X等于X_min时,分子变为0。当分子被分母除时,输出为0。

同样,当分子为X_max — X_min时,新的最大值出现。当这个值被X_max — X_min除时,它变为1。这就是范围如何被调整到0和1之间的。

例如:标准分数

在标准化过程中,每个值都被转换为它的标准分数,[-1,1]的范围内。标准分数也被称为z分数。这是通过从每个值中减去均值,然后除以标准差来实现的。

μ 代表数据的均值或平均数。

σ 代表数据的标准差,

即各数值与均值之间的平均离散程度。如果一个数据集的标准差较低,那么数值可能更接近均值。如果标准差较高,则可能意味着数值分布在一个较大的范围内。可以用以下公式来计算标准差。

σ 2为方差

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ankie(资深技术项目经理)

打赏就是赞赏,感谢你的认可!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值