1)
上面的图是讲得比较清楚的。
2)
除了以Pluto[3]和PPCG[4]为代表的多面体编译工具外,多面体模型在标准开
发和商业应用中的影响也逐步增大,如GCC 的Graphite 框架[5]、LLVM 的Polly 模块[6]以及多面体模型在Open64[7]和IBM XL[8]编译器中的应用.
多面体编译在深度学习中效果可能比较好,因为卷积等计算是非常规整的循环。
3)
4)常用 工具2:
如pet[9]、clan[10]和Polly 是当前多面体编译工具中最常用的3 个抽象分
析库.其中,pet 和clan 是面向源程序设计的抽象分析库,Polly 是面向中间语言设计的抽象分析库.
5)常用 工具3:
在各种多面体编译工具中使用的线性整数规划工具包括isl[12]、
Omega[13]、PIP[14]、Polylib[15]和PPL[16]等.
6)
多面体编译存在什么问题吗?