给定一个二叉树,它的每个结点都存放着一个整数值。
找出路径和等于给定数值的路径总数。
路径不需要从根节点开始,也不需要在叶子节点结束,但是路径方向必须是向下的(只能从父节点到子节点)。
二叉树不超过1000个节点,且节点数值范围是 [-1000000,1000000] 的整数。
示例:
root = [10,5,-3,3,2,null,11,3,-2,null,1], sum = 8 10 / \ 5 -3 / \ \ 3 2 11 / \ \ 3 -2 1 返回 3。和等于 8 的路径有: 1. 5 -> 3 2. 5 -> 2 -> 1 3. -3 -> 11
思路:第一次看这道题的时候并没有什么思路,这道题被分为简单,可真是会者不难,难者不会。这道题和之前的112很像,都是路径和的问题,那道题要求必须从根结点到叶子结点,这道题则不要求。那么可以分为两种情况,如果求解和为sum的话,每次碰到一个结点,既可以把它加入,求解后面的路径是否存在sum-该结点值,也可以不加入该结点,递归它的左右子树,看它的左右子树有多少个这样的结果。注意,这两种情况是分开的,一旦你选择了一个结点,那么为了路径的完整性,你不能跳过他的左右结点,去计算下面的值。
C++代码如下:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
int ifPath(TreeNode* root,int sum)
{ int res=0;
if(root == NULL) return 0;
if(root->val ==sum) res++;
int res1=ifPath(root->left, sum-root->val);
int res2=ifPath(root->right,sum-root->val);
res=res+res1+res2;
return res;
}
public:
int pathSum(TreeNode* root, int sum) {
int res=0;
if(root ==NULL) return 0;
//第一种情况 包含根结点
int res1=ifPath(root,sum);
//第二种情况 在左右子树里
int res2=pathSum(root->left,sum);
int res3=pathSum(root->right,sum);
res=res1+res2+res3;
return res;
}
};