githuab链接:
https://github.com/William-Hai/ArraySortAlgorithm
插入排序
直接插入排序
详解链接:
http://blog.csdn.net/lemon_tree12138/article/details/50968422
回忆:
时间复杂度?(三种),空间复杂度,稳定性?
外层循环多少次?内层主要功能?循环条件?
public static void insertSort(int[] arr){
for(int i=1;i<arr.length;i++){//插入次数
int j=i-1;
int waitinsert = arr[i];//待插入元素
while(j>=0 && arr[j]>waitinsert){//比较大小是否后移,j-1是比较的索引
arr[j+1]=arr[j];//后移
j--;
}
arr[j+1]=waitinsert;//后移后,指针前移了。所以j+1
}
}
int[] a= {4,3,6,5,9,0,8,1,7,2};
3 4 6 5 9 0 8 1 7 2 // a[1]
3 4 5 6 9 0 8 1 7 2 // a[3](a[2]有序不插入)
0 3 4 5 6 9 8 1 7 2 // a[5](a[4]有序不插入)
0 3 4 5 6 8 9 1 7 2 // a[6]
0 1 3 4 5 6 8 9 7 2 // a[7]
0 1 3 4 5 6 7 8 9 2 // a[8]
0 1 2 3 4 5 6 7 8 9 // a[9]
希尔排序
参考链接1:
http://www.cnblogs.com/jingmoxukong/p/4303279.html
参考链接2:
http://blog.csdn.net/lemon_tree12138/article/details/51127533
gap=5时,即分5组:
{9,4}
{1,8}
…
(从上述两个5看出,不稳定)
从插入排序到希尔排序的演变
- 缩小增量排序,每个组中采用插入排序。
- 增量为1时结束排序。
比直接插入多以下步骤:
1.首先设定步长,然后while循环,指只到步长为1;
2.接下来相当于步长次的直接插入操作;
3.接下来写直接插入排序即可,只是步长不是1了。
public static void shellSort(int[] arr){
int gap = arr.length/3+1;
//int gap=arr.length/2;
while(gap>=1){
for(int k=0;k<gap;k++){//1.确定插入排序的次数,步长gap,即gap次
//2.对于其中的每一次,从后一次开始,以下是直接插入排序
for(int i=gap+k;i<arr.length;i=i+gap){
//3.将待插入的元素存为临时变量
int waitinsert=arr[i];
int j=i-gap;//第一次比较,从j前一个元素开始
while(j>=0 && arr[j]>waitinsert){
arr[j+gap]=arr[j];
j=j-gap;
}
arr[j+gap]=waitinsert;
}
}
System.out.println(Arrays.toString(arr));
if(gap==1) break;
gap=gap/3+1;
//gap=gap/2;
}
}
public static void main(String[] args) {
int[] a={4,3,6,5,9,0,8,1,7,2};
shellSort(a);
}
[4, 0, 6, 1, 7, 2, 8, 5, 9, 3]
[4, 0, 6, 1, 7, 2, 8, 3, 9, 5]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
选择排序
算法原理
重点:选择交换
(1)从待排序序列中,找到关键字最小的元素;
(2)如果最小元素不是待排序序列的第一个元素,将其和第一个元素互换;
(3)从余下的 N - 1 个元素中,找出关键字最小的元素,重复(1)、(2)步,直到排序结束。
算法实现
public static void simpleSelect(int[] arr) {
for(int i=0;i<arr.length;i++){//遍历次数,第i个元素与后边所有的比
int minIndex=i;
for(int j=i+1;j<arr.length;j++){//找一个最小的位置
if(arr[j]<arr[minIndex]){
minIndex=j;
}
}
if(i!=minIndex){//本身不是最小的,就交换
int t=arr[minIndex];
arr[minIndex]=arr[i];
arr[i]=t;
}
}
}
算法复杂度
交换排序
冒泡排序 |
算法原理
冒泡排序(Bubble Sort)是一种交换排序,它的基本思想是:两两比较相邻记录的关键字,如果反序则交换,直到没有反序的记录为止。
— 《大话数据结构》
算法实现
public static void bubble(int[] arr){
for(int i=1;i<arr.length;i++){
for(int j=0;j<arr.length-i;j++){
if(arr[j+1]<arr[j]){
int t=arr[j];
arr[j]=arr[j+1];
arr[j+1]=t;
}
}
}
}
算法复杂度
排序方法 | 时间复杂度 | 空间复杂度 | 稳定性 | 复杂性 | ||
平均情况 | 最坏情况 | 最好情况 | ||||
冒泡排序(教科书版) | O(n2) | O(n2) | O(n) | O(1) | 稳定 | 简单 |
快速排序 |
算法原理
基准数、左游标、右游标
分析1:
首先设置一个临时变量用来存放随机取出数组中的一个数,一般我们取数组的第一个元素也就是说temp=a[0],同时设置两个游标分别指向数组第一个元素和最后一个元素。
算法的基本运算步骤为:
依次比较数组的后游标所指与temp的大小,如果temp< a[j],则j–,直到遇到第一个temp>a[j],则停止移动
依次比较数组的前游标所指与temp的大小,如果temp > a[i],则i++,直到遇到第一个temp < a[i],则停止移动
a[i]与a[j]交换
判断i是否等于j,如果不相等则循环1、2、3步,直到i等于j,则完成一次快速排序。
分析2:
分别从初始序列“6 1 2 7 9 3 4 5 10 8”两端开始“探测”。
先从右往左找一个小于6的数,再从左往右找一个大于6的数,然后交换他们。这里可以用两个变量i和j,分别指向序列最左边和最右边。我们为这两个变量起个好听的名字“哨兵i”和“哨兵j”。刚开始的时候让哨兵i指向序列的最左边(即i=0),指向数字6。让哨兵j指向序列的最右边,指向数字8。

首先哨兵j开始出动。因为此处设置的基准数是最左边的数,所以需要让哨兵j先出动,这一点非常重要(请自己想一想为什么)。哨兵j一步一步地向左挪动(即j–),直到找到一个小于6的数停下来。
接下来哨兵i再一步一步向右挪动(即i++),直到找到一个数大于6的数停下来。最后哨兵j停在了数字5面前,哨兵i停在了数字7面前。


现在交换哨兵i和哨兵j所指向的元素的值。交换之后的序列如下:
6 1 2 5 9 3 4 7 10 8
到此,第一次交换结束。接下来开始哨兵j继续向左挪动(再友情提醒,每次必须是哨兵j先出发)。他发现了4(比基准数6要小,满足要求)之后停了下来。哨兵i也继续向右挪动的,他发现了9(比基准数6要大,满足要求)之后停了下来。此时再次进行交换,交换之后的序列如下:
6 1 2 5 4 3 9 7 10 8


第二次交换结束,“探测”继续。哨兵j继续向左挪动,他发现了3(比基准数6要小,满足要求)之后又停了下来。哨兵i继续向右移动,糟啦!此时哨兵i和哨兵j相遇了,哨兵i和哨兵j都走到3面前。说明此时“探测”结束。我们将基准数6和3进行交换。交换之后的序列如下:
3 1 2 5 4 6 9 7 10 8



到此第一轮“探测”真正结束。此时以基准数6为分界点,6左边的数都小于等于6,6右边的数都大于等于6。回顾一下刚才的过程,其实哨兵j的使命就是要找小于基准数的数,而哨兵i的使命就是要找大于基准数的数,直到i和j碰头为止。
OK,解释完毕。现在基准数6已经归位,它正好处在序列的第6位。此时我们已经将原来的序列,以6为分界点拆分成了两个序列,左边的序列是“3 1 2 5 4”,右边的序列是“9 7 10 8”。接下来还需要分别处理这两个序列。因为6左边和右边的序列目前都还是很混乱的。不过不要紧,我们已经掌握了方法,接下来只要模拟刚才的方法分别处理6左边和右边的序列即可。

参考链接:
http://blog.csdn.net/yzllz001/article/details/50982841
算法实现
实现重点:基准数、左游标、右游标
public static void fastSort(int[] a, int leftIndex,int rightIndex){
if(leftIndex>=rightIndex){//很重要,递归结束条件
return;
}
int key=a[leftIndex];//基准数选取,选法有很多
int i=leftIndex;
int j=rightIndex;
while(i!=j){
while(a[j]>=key && i<j){
j--;
}
while(a[i]<=key && i<j){
i++;
}
if(i<j){
int t=a[i];
a[i]=a[j];
a[j]=t;
}
}
//while执行完毕,即i=j时,基数归位
a[leftIndex]=a[i];
a[i]=key;
//继续处理左边的和右边的,递归过程
fastSort(a, leftIndex, i-1);
fastSort(a, i+1, rightIndex);
}
public static void main(String[] args) {
int[] a={4,3,6,5,9,0,8,1,7,2};
fastSort(a, 0, 9);
System.out.println(Arrays.toString(a));
}