动量策略

动量策略是一种投资方法,基于历史价格趋势预测未来走势。该策略认为过去表现优秀的资产在未来将继续表现出色,反之亦然。文章深入探讨了动量效应的原理,分析了其在股票、债券等市场的应用,并讨论了实施动量策略可能面临的风险与挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

# 导入函数库
import jqdata 
import math
import numpy as np
import pandas as pd
import datetime


# 策略初始化
def initialize(context):
    
    set_option('use_real_price',True)#价格前复权
    g.benchmark='000300.XSHG'
    set_order_cost(OrderCost(open_tax=0,close_tax=0.001, open_commission=0.0003, close_commission=0.0003,min_commission=5), type='stock')
    g.q=query(valuation.code,valuation.pe_ratio,indicator.inc_net_profit_year_on_year).filter(valuation.code.in_(g.security))
    g.N=10
    g.k=2
   
    run_monthly(handle,1)


def handle(context):
    stocks = get_index_stocks('000300.XSHG')
    df_close=history(30,field='close',security_list=list(stocks)).T
    df_close['ret']=(df_close/iloc[:,-1])-df_close.iloc[:,0])/df_close.iloc[:,0]
    sorted_stocks=df_close.sort('ret',ascending=False).index#降序
    to_hold=sorted_stocks[:g.N]
    for stock in context.por
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值