【紧急预警】NVIDIA Triton推理服务器漏洞链可导致RCE!

2025 年 8 月 4 日消息,NVIDIA 旗下的 Triton 推理服务器(一款支持 Windows 和 Linux 系统、用于大规模运行 AI 模型的开源平台)被曝出一系列安全漏洞。这些漏洞一旦被利用,攻击者有可能完全接管存在漏洞的服务器。

Wiz 安全公司的研究员 Ronen Shustin 和 Nir Ohfeld 在今日发布的报告中指出:“如果将这些漏洞串联利用,远程未授权攻击者有可能获得服务器的完全控制权,实现远程代码执行(RCE)。”

【漏洞详情速览】

此次曝光的漏洞包括以下三个:

  • CVE-2025-23319(CVSS 评分 8.1):存在于 Python 后端,攻击者可通过发送特定请求造成越界写入

  • CVE-2025-23320(CVSS 评分 7.5):同样位于 Python 后端,攻击者发送超大请求可突破共享内存限制

  • CVE-2025-23334(CVSS 评分 5.9):Python 后端漏洞,攻击者发送请求可引发越界读取

成功利用这些漏洞可能导致多种危害:信息泄露、远程代码执行、拒绝服务攻击等,其中 CVE-2025-23319 还可能造成数据篡改。目前,这些问题已在 25.07 版本中修复。

这家云安全公司表示,这三个漏洞组合起来,能让攻击者从单纯的信息泄露升级为完全控制系统,且整个过程无需任何登录凭证。

【漏洞根源与攻击路径】

这些漏洞的根源在于 Triton 的 Python 后端 —— 该组件负责处理来自 PyTorch、TensorFlow 等主流 AI 框架的 Python 模型推理请求。

Wiz 描述的攻击流程显示,攻击者可先利用 CVE-2025-23320 漏洞,泄露后端内部 IPC 共享内存区域的完整唯一名称(这一关键信息本应保密),随后借助另外两个漏洞获得推理服务器的完全控制权。

研究员强调:“对于使用 Triton 部署 AI/ML 系统的企业来说,这是极高风险。成功的攻击可能导致珍贵的 AI 模型被盗、敏感数据泄露、AI 模型响应被篡改,甚至让攻击者以此为跳板深入渗透整个网络。”

此外,NVIDIA 在 8 月发布的 Triton 推理服务器安全公告中,还提及修复了另外三个高危漏洞(CVE-2025-23310、CVE-2025-23311、CVE-2025-23317)。这些漏洞若被利用,同样可能导致远程代码执行、拒绝服务、信息泄露和数据篡改。

尽管目前尚无证据表明这些漏洞已被实际利用,但建议所有用户尽快安装最新更新以确保安全。

详细漏洞信息:

揭秘NVIDIA Triton漏洞链:从信息泄露到AI服务器接管——CVE-2025-23319深度解析

推荐阅读更多 网络安全资讯

NVIDIA Triton推理服务器为京东提供了一个强大的平台,以优化深度学习模型的推理性能,并实现高效资源管理。在开始使用Triton之前,您应当首先熟悉其支持的模型运行时,例如TensorRT、ONNX Runtime、PyTorch、TensorFlow等,这样可以针对不同模型和框架的需求选择最适合的运行时环境。 参考资源接:[京东Triton实践:深度学习推理优化与部署](https://wenku.csdn.net/doc/7unwyyjojf) 在具体实践中,可以利用Triton的多模型调度能力,将多个模型实例化并部署在同一服务器上,通过调度算法根据工作负载动态调整资源分配,以提高资源利用率和推理性能。此外,Triton还支持模型版本管理和动态批处理,这有助于适应业务需求的变化,并提高批量推理的效率。 在优化推理性能方面,Triton允许对不同模型进行自动优化,包括模型的序列化、反序列化、内核调度和执行优化等。您可以利用Triton提供的工具和API进行定制化优化,比如根据业务负载和硬件能力调整模型实例的数量和配置,以达到最佳的推理吞吐率。 在资源管理方面,Triton的调度器负责在多个模型实例之间合理分配计算资源,如GPU、CPU和内存。京东在部署Triton时,可以根据业务的重要性和紧急程度设置优先级,以确保关键业务的资源需求得到满足。同时,Triton还支持动态负载平衡和自动扩展,使得在业务高峰时段能够自动增加实例数量来处理更多请求,而在业务低谷时段则减少资源消耗。 为了实现模型监控和统一接口,Triton提供了丰富的监控接口和日志记录功能,可以对模型性能进行实时监控,并通过统一接口实现模型的灵活调用。您需要合理配置监控系统,及时发现和处理可能出现的性能瓶颈和异常情况。 京东的实践证明,通过Triton的统一接口和模型监控,以及对资源管理的精细控制,可以极大地提升深度学习模型的推理效率和业务的响应速度。为了更深入地掌握这些技术细节和最佳实践,我建议参考《京东Triton实践:深度学习推理优化与部署》,这本书详细介绍了京东如何将Triton集成到其业务中,并提供了丰富的案例研究和操作指导。 参考资源接:[京东Triton实践:深度学习推理优化与部署](https://wenku.csdn.net/doc/7unwyyjojf)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值