MobileNetV1和V2详解

本文详细介绍了MobileNetV1和V2的网络结构,包括深度可分离卷积、宽度因子、分辨率因子以及MobileNetV2中的Inverted Residuals和Linear Bottlenecks设计。重点讨论了如何通过这些设计降低计算量和参数量,实现移动端高效的深度学习模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

                                  Mobile Net V1

                                            摘要

       本文提出MobileNets的高效模型,用于移动端设备的视觉应用。该网络基于深度可分离卷积来构建轻量级深度神经网络,另外,该网络引入了两个简单的全局超参数(分辨率因子和宽度因子),可以在延迟和精度之间进行权衡。这些超参数允许模型根据问题的约束为其应用选择合适大小的模型。

1. 论文思想

        基于深度级可分离卷积块的堆叠设计MobileNets网络结构。通过权衡延迟时间和精度要求,基于宽度因子和分辨率因子构建合适规模、合适速度的MobileNet结构。

2. 深度级可分离卷积结构(Xception、Extream Inception)

        思想:将通道间的相关性和空间相关性完全分离出来,同时大大减少计算量和参数量。

与传统的卷积网络结构不同,其步骤如下:

1. 对特征图的各个通道进行卷积操作(3*3*1)

2. 通道合并卷积操作后的各页特征图

3. 1*1卷积降低通道数

作用:

相比传统的卷积网络结构,可减少计算量和参数量。

2.1 计算量

两种损失之间的比例关系:

当N较大时,Dk=3,可大约减少9倍的计算量

2.2 参数量

标准卷积参数量 = Dk*Dk*M*N

深度级分离卷积参数量 = Dk*Dk*M+M*N

计算两种损失的比例关系,同样可计算出来,当N较大时,Dk=3,可大约减少9倍的参数量。

3. MobileNet神经网络结构(28层)

        MobileNet模型在TensorFlow中使用RMSprop优化算法进行训练,采用数据增强技术,在depthwise滤波器上增加L2正则化。

 

3.1 宽度因子

为了构造这些结构更小且计算量更小的模型,我们引入了一个参数α,称为宽度因子。宽度因子α的作用是在每层均匀地稀疏网络,为每层通道乘以一定的比例,从而减少各层的通道数。常用值有1、0.75、0.5、0.25。

3.2 分辨率因子

为了减少计算量,引入了第二个参数ρ,称为分辨率因子。其作用是在每层特征图的大小乘以一定的比例。

                                      MobileNet V2

                                           摘要

1. 思想

      基于Mobile Net V1中的Depth-wise Separable Convolution和Resnet中的Shortcut,提出一种新的结构,称作Inverted Residuals and Linear Bottlenecks。

2. MobileNet V1、ResNet和MobileNet V2 中的bottleneck结构对比

MobileNet V2的网络结构

3. MobileNet V2中的bottleneck为什么先扩张通道数在压缩通道数呢?

        因为MobileNet 网络结构的核心就是Depth-wise,此卷积方式可以减少计算量和参数量。而为了引入shortcut结构,若参照Resnet中先压缩特征图的方式,将使输入给Depth-wise的特征图大小太小,接下来可提取的特征信息少,所以在MobileNet V2中采用先扩张后压缩的策略。

4. MobileNet V2中的bottleneck为什么在1*1卷积之后使用Linear激活函数?

       因为在激活函数之前,已经使用1*1卷积对特征图进行了压缩,而ReLu激活函数对于负的输入值,输出为0,会进一步造成信息的损失,所以使用Linear激活函数。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值