Mobile Net V1
摘要
本文提出MobileNets的高效模型,用于移动端设备的视觉应用。该网络基于深度可分离卷积来构建轻量级深度神经网络,另外,该网络引入了两个简单的全局超参数(分辨率因子和宽度因子),可以在延迟和精度之间进行权衡。这些超参数允许模型根据问题的约束为其应用选择合适大小的模型。
1. 论文思想
基于深度级可分离卷积块的堆叠设计MobileNets网络结构。通过权衡延迟时间和精度要求,基于宽度因子和分辨率因子构建合适规模、合适速度的MobileNet结构。
2. 深度级可分离卷积结构(Xception、Extream Inception)
思想:将通道间的相关性和空间相关性完全分离出来,同时大大减少计算量和参数量。
与传统的卷积网络结构不同,其步骤如下:
1. 对特征图的各个通道进行卷积操作(3*3*1)
2. 通道合并卷积操作后的各页特征图
3. 1*1卷积降低通道数
作用:
相比传统的卷积网络结构,可减少计算量和参数量。
2.1 计算量
两种损失之间的比例关系:
当N较大时,Dk=3,可大约减少9倍的计算量
2.2 参数量
标准卷积参数量 = Dk*Dk*M*N
深度级分离卷积参数量 = Dk*Dk*M+M*N
计算两种损失的比例关系,同样可计算出来,当N较大时,Dk=3,可大约减少9倍的参数量。
3. MobileNet神经网络结构(28层)
MobileNet模型在TensorFlow中使用RMSprop优化算法进行训练,采用数据增强技术,在depthwise滤波器上增加L2正则化。
3.1 宽度因子
为了构造这些结构更小且计算量更小的模型,我们引入了一个参数α,称为宽度因子。宽度因子α的作用是在每层均匀地稀疏网络,为每层通道乘以一定的比例,从而减少各层的通道数。常用值有1、0.75、0.5、0.25。
3.2 分辨率因子
为了减少计算量,引入了第二个参数ρ,称为分辨率因子。其作用是在每层特征图的大小乘以一定的比例。
MobileNet V2
摘要
1. 思想
基于Mobile Net V1中的Depth-wise Separable Convolution和Resnet中的Shortcut,提出一种新的结构,称作Inverted Residuals and Linear Bottlenecks。
2. MobileNet V1、ResNet和MobileNet V2 中的bottleneck结构对比
MobileNet V2的网络结构
3. MobileNet V2中的bottleneck为什么先扩张通道数在压缩通道数呢?
因为MobileNet 网络结构的核心就是Depth-wise,此卷积方式可以减少计算量和参数量。而为了引入shortcut结构,若参照Resnet中先压缩特征图的方式,将使输入给Depth-wise的特征图大小太小,接下来可提取的特征信息少,所以在MobileNet V2中采用先扩张后压缩的策略。
4. MobileNet V2中的bottleneck为什么在1*1卷积之后使用Linear激活函数?
因为在激活函数之前,已经使用1*1卷积对特征图进行了压缩,而ReLu激活函数对于负的输入值,输出为0,会进一步造成信息的损失,所以使用Linear激活函数。