Contrastive Loss (对比损失)

本文详细介绍了对比损失函数(Contrastive Loss),这是在孪生神经网络(Siamese Network)中常用的损失函数之一。该函数可以有效地处理配对数据间的相似性关系,通过调整样本特征的欧氏距离来优化模型,确保相似样本在特征空间中保持接近,而不相似的样本则保持距离。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Contrastive Loss (对比损失)

在caffe的孪生神经网络(siamese network)中,其采用的损失函数是contrastive loss,这种损失函数可以有效的处理孪生神经网络中的paired data的关系。contrastive loss的表达式如下:

L=12Nn=1Nyd2+(1y)max(margind,0)2
其中d=||anbn||2,代表两个样本特征的欧氏距离,y为两个样本是否匹配的标签,y=1代表两个样本相似或者匹配,y=0则代表不匹配,margin为设定的阈值。

这种损失函数最初来源于Yann LeCun的Dimensionality Reduction by Learning an Invariant Mapping,主要是用在降维中,即本来相似的样本,在经过降维(特征提取)后,在特征空间中,两个样本仍旧相似;而原本不相似的样本,在经过降维后,在特征空间中,两个样本仍旧不相似。

观察上述的contrastive loss的表达式可以发现,这种损失函数可以很好的表达成对样本的匹配程度,也能够很好用于训练提取特征的模型。当y=1(即样本相似)时,损失函数只剩下yd2,即原本相似的样本,如果在特征空间的欧式距离较大,则说明当前的模型不好,因此加大损失。而当y=0时(即样本不相似)时,损失函数为(1y)max(margind,0)2,即当样本不相似时,其特征空间的欧式距离反而小的话,损失值会变大,这也正好符号我们的要求。


这张图表示的就是损失函数值与样本特征的欧式距离之间的关系,其中红色虚线表示的是相似样本的损失值,蓝色实线表示的不相似样本的损失值。

### 对比损失函数的实现 对比损失Contrastive Loss)广泛应用于度量学习领域,特别是在Siamese网络架构中。该损失函数旨在拉近相似样本间的距离,同时推远不相似样本的距离。 对于一对输入样本 \( (x_1, x_2) \),以及它们之间的标签 \( y \in {0, 1} \),其中\( y = 0 \)表示两样本属于同一类别,\( y = 1 \)则反之。假设这两个样本经过编码器后的特征向量分别为 \( f(x_1) \) 和 \( f(x_2) \)[^1]。那么对比损失可以定义如下: \[ L(y,d)=\begin{cases} d^{2}, & \text{if } y=0 \\ (\max(margin-d,0))^{2},& \text{if } y=1 \end{cases}\] 这里 \( d=\left \|f(x_1)-f(x_2)\right \| _2 \) 表示两个嵌入空间点之间欧氏距离;`margin` 是一个预设阈值,用于控制不同类间最小间隔大小[^2]。 下面给出Python环境下基于PyTorch框架的具体实现方式: ```python import torch from torch import nn class ContrastiveLoss(nn.Module): def __init__(self, margin=2.0): super(ContrastiveLoss, self).__init__() self.margin = margin def forward(self, output1, output2, label): euclidean_distance = F.pairwise_distance(output1, output2) loss_contrastive = torch.mean((label) * torch.pow(euclidean_distance, 2)+ (1-label) * torch.pow(torch.clamp(self.margin - euclidean_distance, min=0.0), 2)) return loss_contrastive ``` 此代码片段创建了一个名为 `ContrastiveLoss` 的自定义损失层,在前馈过程中计算并返回最终的平均损失值。通过调整`margin`参数,可以根据具体应用场景优化模型性能[^3]。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值