
AI
文章平均质量分 93
awei0916
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Java生态下的AI开发利器:LangChain4j与Spring AI深度对比与实战
Java生态的AI开发框架中,Spring AI与LangChain4j呈现显著差异。Spring AI深度集成Spring生态,提供企业级安全与微服务支持,适合金融风控等合规场景;LangChain4j则以模块化设计见长,支持多模型动态切换和复杂提示链编排,在RAG系统构建上更具优势。技术选型建议:优先Spring AI用于现有Spring项目改造,选择LangChain4j进行创新型AI产品开发。二者在模型支持、提示工程等方面各有侧重,开发者需结合具体业务需求评估。原创 2025-07-27 18:00:00 · 796 阅读 · 0 评论 -
深入解析LangChain4j:Java生态下的大模型应用开发利器
LangChain4j为Java开发者提供高效集成大语言模型的解决方案。该开源框架通过标准化API封装了主流模型(如OpenAI、Google Vertex AI)和向量数据库(如Milvus)的对接细节,支持检索增强生成(RAG)、工具调用和多模态处理等核心功能。开发者可轻松构建智能客服、新闻分析和多模态导购等应用,并利用Spring Boot快速实现企业级部署。LangChain4j优化了虚拟线程、分级缓存等性能策略,同时注重安全合规,支持国产化适配。官方文档和GitHub示例为开发者提供了丰富的学习资原创 2025-06-17 18:30:00 · 1003 阅读 · 0 评论 -
深度解析SerpAPI:AI时代的智能搜索引擎集成方案
低代码集成:无需深入搜索引擎API细节,通过LangChain包装器实现“一行代码启动搜索”。高灵活性:支持近20种搜索引擎与数百个参数组合,适配多元业务场景。实时性保障:直接获取搜索引擎实时结果,延迟通常低于2秒。原创 2025-06-12 12:15:00 · 978 阅读 · 0 评论 -
探索 AutoGPT:人工智能自主新时代的先锋
在人工智能的快速发展进程中,新的工具和技术不断涌现,革新着我们与智能系统交互及利用其能力的方式。其中,AutoGPT 作为一款突破性的应用,正逐渐吸引全球的关注,引领我们迈向人工智能自主执行任务的新时代原创 2025-06-08 11:00:00 · 1124 阅读 · 0 评论 -
AI数据爬虫工具Firecrawl部署安装及Dify调用方法
Firecrawl 是一个可以提供 API 服务的开源爬虫工具,我们只需要给它一个 URL,无需提供网站地图(sitemap),它就能抓取该 URL 的当前网页或更深层的网页,并可以把抓到的数据转变成 markdown 格式,这种格式更适合 LLM 阅读,在当今的 AI 浪潮下可以说是非常适合了。Scrape:抓取 URL 当前页面的内容,可以以 markdown 格式返回。Crawl:递归抓取 URL 的子域,并可以以 markdown 格式返回内容。Map。原创 2025-05-16 11:30:00 · 1834 阅读 · 0 评论 -
深度解析六大AI爬虫工具:crawl4ai、FireCrawl、Scrapegraph-ai、Jina、SearXNG、Tavily技术对比与实战指南
在AI大模型时代,数据获取与处理是构建智能应用的核心环节。传统爬虫面临技术门槛高、反爬应对复杂、动态内容处理困难等挑战,而AI驱动的爬虫工具通过融合大语言模型(LLM)、图神经网络、自动化解析等技术,正在重塑数据抓取范式。本文将深度测评6款主流AI爬虫工具,从技术原理、核心功能、实战场景到性能对比,为开发者提供一站式选型指南。原创 2025-05-11 13:00:00 · 6404 阅读 · 0 评论 -
炸裂!阿里 Qwen3 成国内首个混合推理大模型,性能碾压众多顶级模型
Qwen3的发布不仅标志着阿里在大模型领域的技术突破,更通过混合推理、开源生态与低成本部署,为全球AI开发者提供了“性能与成本”的最优解。其“思考模式”与“非思考模式”的动态切换,以及MoE架构的参数效率革命,正在重新定义AI的边界。随着智能体(Agent)时代的到来,Qwen3有望成为推动行业智能化转型的核心引擎,开启AI普惠的新篇章。原创 2025-05-01 11:00:00 · 1094 阅读 · 0 评论 -
深度解析 Model Context Protocol(MCP):重构大模型与外部世界的交互范式
MCP由Anthropic于2024年11月开源,旨在解决大模型与外部系统交互的标准化问题。其核心思想是将工具调用抽象为统一的协议层,类似HTTP协议对Web应用的支撑作用。截至2025年3月,OpenAI、Google DeepMind等头部企业已宣布支持MCP,生态中涌现出1000+社区服务器和数千个集成应用。原创 2025-04-28 10:30:00 · 1462 阅读 · 0 评论 -
大模型时代RAG技术全解析:原理、实战与未来趋势
从2020年Facebook提出原始架构,到2024年多模态联邦RAG的落地,这项技术正在重塑企业AI的边界。通过本文的万字解析,我们不仅掌握了从分块策略到生成控制的全链路技术,更通过金融/医疗实战案例获得了可复用的工程经验。建议开发者从LangChain+Chroma的轻量组合入手,逐步向Milvus+GPT-4的高性能方案升级,在持续迭代中构建真正的"企业智能大脑"。原创 2025-04-27 14:30:00 · 909 阅读 · 0 评论 -
深度解析AI工作流自动化神器n8n:从开源生态到企业级应用全攻略
在企业数字化转型加速的今天,工作流自动化工具正从「效率工具」升级为「业务中台核心组件」。n8n作为一款基于Node.js的开源工作流引擎,以**「可编程的低代码」**为核心理念,在Zapier、Make等工具主导的自动化市场中开辟新赛道。技术中立性:支持1500+原生节点(涵盖API、数据库、文件系统等),通过JSON Schema自定义节点机制,实现对企业私有系统的无缝接入双向数据流:不仅支持触发-执行单向流程,更可构建包含循环、条件判断、子流程调用的复杂逻辑网络开发者友好。原创 2025-04-23 09:30:00 · 1715 阅读 · 0 评论 -
华为AI软硬一体服务器深度解析:Atlas 800/800I/800T全系列对比与场景化选型指南
在人工智能算力需求呈指数级增长的今天,华为基于"硬件重构+软件定义"理念打造的Atlas系列AI服务器,已成为企业智能化转型的核心引擎。作为昇腾AI全栈解决方案的关键载体,Atlas 800/800I/800T三款产品通过不同形态的算力组合,覆盖从云端训练到边缘推理的全场景需求。华为Atlas系列AI服务器通过硬件重构与软件定义的深度融合,已成为企业智能化转型的核心基础设施。原创 2025-04-22 14:30:00 · 4286 阅读 · 0 评论 -
一文读懂AI大模型中的Agent技术
AI Agent(智能体)是基于LLM(大语言模型)构建的具备环境感知→决策推理→行动执行完整能力链的智能系统。Agent能够模拟独立思考过程,灵活调用各类工具,逐步达成预设目标。自主性:无需人工干预的闭环运行工具调用:API/插件/代码解释器使用能力记忆机制:短期记忆+长期记忆的复合架构目标导向:通过Reward机制驱动任务完成与传统Chatbot的本质区别在于:Agents不仅能回答问题,还能通过动态规划完成复杂任务链条,例如自动生成数据分析报告、跨平台信息整合等。原创 2025-04-20 12:30:00 · 1106 阅读 · 0 评论 -
深度解析AI大模型中的模型微调技术:从基础到实践
效率优先:比从头训练节省90%以上计算资源(如LoRA技术仅更新0.1%参数)。性能提升:利用预训练的通用特征,在小数据集上快速收敛,避免过拟合。场景适配:让通用模型适应垂直领域(如医疗问答、法律文书生成)。模型微调是连接预训练模型与实际应用的桥梁,其核心在于以最小成本激活大模型的潜力。无论是全量微调的极致性能追求,还是LoRA/QLoRA的轻量化方案,选择的关键在于数据规模、计算资源与任务目标的平衡。随着技术演进,微调正从“经验驱动”走向“自动化、高效化”,成为AI落地不可或缺的核心技术。立即实践。原创 2025-04-19 11:45:00 · 1342 阅读 · 0 评论 -
从0到1精通Gradio:AI大模型Web应用开发的终极神器
Gradio是一个开源的Python库(GitHub Stars 37k+),专门为机器学习模型快速构建可交互的Web演示界面。其核心优势是3行代码创建Web应用的能力,相比传统Flask/Django开发效率提升10倍以上。原创 2025-04-18 15:30:00 · 1118 阅读 · 0 评论 -
一文读懂AI大模型时代的RAG技术
RAG(Retrieval-Augmented Generation,检索增强生成) 是一种结合检索技术与生成模型的技术架构,旨在通过动态引入外部知识库增强大语言模型(LLM)的生成能力。其核心思想是通过检索系统从外部数据源(如企业知识库、实时文档等)获取相关信息,并将检索结果作为上下文输入生成模型,以提高生成答案的准确性、时效性和专业性原创 2025-04-17 14:00:00 · 1517 阅读 · 0 评论 -
一文读懂 Tokens 的原理、应用与成本优化
Tokens是大模型处理文本时的最小语义单元,是自然语言与机器语言之间的“翻译中介”。其角色相当于计算机世界的二进制编码。与人类理解的"字词"不同,Token通过特殊算法将连续文本转化为离散符号以适配神经网络。示例:句子“我爱AI大模型”在不同模型中可能被切分为:我爱AI大模型(7个Token)我爱AI大模型(4个Token)我爱AI大##模型(5个Token,##表示子词前缀)Tokens不仅是大模型的“语言细胞”,更是连接技术原理与工程落地的关键纽带。选择更适配的模型与分词方案。原创 2025-04-15 11:45:00 · 1573 阅读 · 0 评论 -
一文读懂 AI 算力单位
算力,简单来说,就是计算能力。在 AI 领域,它主要指的是硬件设备在单位时间内能够完成的计算量。这些计算涵盖了各种复杂的数学运算,比如矩阵乘法、向量加法等,而这些运算正是神经网络训练和推理过程的基础。可以说,算力就如同 AI 的 “发动机”,算力越强,AI 系统运行得就越快、越高效原创 2025-04-13 12:45:00 · 1971 阅读 · 0 评论 -
从实践出发:AI智能体GPU算力估算方案全解析——以知识库应用为例
随着大模型与RAG(Retrieval-Augmented Generation)技术的普及,新一代AI智能体正呈现**知识密集化**与**响应实时化**的双重趋势。但在实际应用中开发者常面临:💡 *如何精准估算智能体算力需求?*💡 *如何在检索精度与响应延迟间找到平衡?*本文将以典型知识库智能体为例,**手把手拆解算力估算方法论**,并给出落地优化建议。原创 2025-04-11 14:00:00 · 1722 阅读 · 1 评论 -
AI 智能体GPU算力估算方案:从知识检索到生成的全链路实践
AI智能体的算力估算需兼顾理论模型与工程实现分层设计:将流程拆解为检索、生成等独立模块,分别优化算力瓶颈。动态扩展:通过云原生架构(如K8s集群)实现算力资源的弹性分配,应对流量波动。技术融合:结合量化、剪枝、模型并行等技术,在算力成本与性能之间找到最优解。随着大模型应用的普及,算力已从“资源支撑”转变为“核心竞争力”。通过系统化的估算方法与工程实践,企业可更精准地规划智能体部署,让AI真正成为降本增效的核心引擎。延伸思考:当智能体引入多模态处理(如图像OCR、语音ASR)时,算力估算需如何调整?原创 2025-04-10 11:00:00 · 1308 阅读 · 0 评论 -
AI智能体结合知识库估算GPU算力的方案
在聊天模型中集成知识库(如RAG架构或微调嵌入),算力需求将因检索增强机制、上下文扩展及模型交互方式变化而显著增加。原创 2025-04-03 16:49:50 · 968 阅读 · 0 评论 -
【深度对比】CherryStudio vs ChatBox:从定位到实操,哪款AI工具更适合你?
Cherry Studio是一款支持多模型服务的Windows、macOS和Linux平台的GPT客户端,专为专业用户设计。它内置了30多个行业的智能助手,帮助用户在多种场景下提升工作效率。ChatBox是一种智能对话工具,结合了人工智能技术和便捷的操作界面,旨在帮助用户快速完成各种任务。它支持多款全球最先进的AI大模型服务,适用于Windows、Mac和Linux操作系统。选CherryStudio,当你需要✅ 自建模型并进行全生命周期管理(训练→部署→迭代)原创 2025-04-08 10:15:00 · 2168 阅读 · 0 评论 -
【ChatBox 新手入门全攻略】从下载安装到高效使用,一文搞定!
ChatBox 是一款支持多语言模型的高效 AI 聊天客户端,主打流畅智能的对话体验,无论是日常聊天、工作辅助(如文案生成、数据整理),还是编程调试、学习答疑,都能轻松胜任原创 2025-04-07 10:00:00 · 2951 阅读 · 0 评论 -
【保姆级教程】Cherry Studio+DeepSeek R1 本地知识库搭建指南:告别硬件限制,打造专属 AI 助手
作为AI开发者,你是否遇到过这些痛点? - 高性能大模型本地部署难,显卡成本动辄上万 - 多模型切换繁琐,每次都要重新配置环境 - 文档检索靠手动,效率低下还容易遗漏关键信息 今天推荐的 **Cherry Studio** 完美解决这些问题!这是一款支持多模型聚合的桌面工具,通过可视化界面+远程API调用,让你轻松接入DeepSeek R1等顶级大模型,无需高端硬件即可实现本地聊天和知识库搭建。本文手把手教你从下载到实战,建议收藏备用!原创 2025-04-06 10:00:00 · 1784 阅读 · 0 评论 -
LangChain vs LlamaIndex:大模型应用开发框架深度对比与实战指南
LangChain是一个框架,专门用于基于自定义数据构建个性化的大型语言模型(LLMs)。它能够整合多种数据源,包括关系型数据库、非关系型数据库、APIs,以及自定义知识库。LangChain通过链式机制运作,将一系列请求和集成工具的输出依次传递,形成连续的处理流程。利用这一机制,LangChain不仅能够确保从您的专有数据中提取相关上下文,还能生成恰当的响应,无论是用于公司的定制问答机器人、内部分析还是与数据源协同工作的AI助手。原创 2025-04-05 11:30:00 · 1756 阅读 · 0 评论 -
Dify外挂RAGFlow的知识库配置操作,实现提高增强检索能力
在AI应用开发领域,Dify凭借其革命性的可视化编排能力迅速成为低代码开发赛道的领跑者。然而随着企业级用户深入应用,其技术瓶颈逐渐显现:原生检索增强生成(RAG)引擎在处理多模态数据处理、长文本语义理解及高频迭代更新的企业级知识库时,响应质量与效率呈现显著衰减,尤其在应对复杂业务场景下的多轮对话意图捕捉、跨文档关联推理等核心需求时,现有架构暴露出明显的性能天花板。作为开源领域新一代检索增强生成引擎,RAGFlow通过深度文档理解技术重构了多模态数据处理范式。原创 2025-03-28 18:55:25 · 2914 阅读 · 0 评论 -
AI人脸识别技术接入方案对比
阿里云视觉智能开放平台基于达摩院自研的人脸人体分析技术,提供人脸检测与五官定位、人脸属性识别、人脸比对、人脸搜索、人体检测、人体属性、行为分析等多种功能,为开发者和企业用户提供高性能高可用的人脸人体识别服务。服务端人脸识别离线SDK,包括人脸检测、人脸跟踪、人脸关键点定位、人脸质量、角度模型、活体检测和人脸识别等能力,可以直接部署服务器上。最近公司做人脸识别相关的项目,考虑到识别结果的准确率和成本的问题,调研了百度,阿里云,科大迅飞,微信小程序相关的人脸识别接口接入方式以及收费情况。原创 2025-03-26 17:23:53 · 747 阅读 · 0 评论 -
DeepSeekR1与DeepSeekV3区别
其中,R1 版本是专门针对复杂逻辑推理场景优化的模型,通过强化符号逻辑处理能力,擅长解决数学证明、代码生成、逻辑问答等需要深度推理的任务。而 V3 版本则定位为通用型自然语言处理平台,在保持基础语言理解能力的同时,重点提升了多模态内容处理(如图文理解、视频解析)和超长文本建模(支持 10 万 token 以上上下文)的能力,更适用于知识图谱构建、跨模态检索、长文档摘要等综合型应用场景。,在数学、逻辑和复杂问题解决上表现卓越,适合需要深度思考的场景。,在编程、多语言和内容生成上领先,适合企业级通用需求。原创 2025-03-26 09:11:19 · 3002 阅读 · 0 评论 -
大模型部署主流工具对比:Ollama,vLLM,llama.cpp,LM Studio
LM Studio是一款功能强大的桌面应用程序,旨在让用户能够在本地设备上轻松运行、管理和部署大型语言模型(LLMs),而无需依赖昂贵的云端服务。它降低了使用大语言模型的门槛,提供了离线运行、灵活使用模型和广泛模型兼容性等核心功能,特别适合开发者和爱好者使用。Ollama是一个开源的本地运行和管理大语言模型(LLM)的工具,旨在帮助用户快速在本地设备上部署和管理大模型,如Llama 2和DeepSeek。多模型格式支持增加了模型选择的灵活性,用户可以使用不同类型的模型。原创 2025-03-25 16:22:40 · 2057 阅读 · 0 评论 -
使用DeepSeekR1基于LangChain构建聊天机器人(带记忆功能)
基于任何LLM框架构建的链和智能代理,并与LangChain无缝集成,LangChain是使用LLM构建的首选开源框架。简单说就是用它来观察大模型进行了哪些调用,让你清楚你的大模型内部咋工作的。为了让大家先感受一下LangChain框架,这里使用框架进行一个最简单的对话案例,注意,这个案例一定是正确的,如果报错则一定是环境缺少包或者环境变量没配置等问题。LangChain应用需要一个大模型型,官方教程使用的是OpenAI,本文使用硅基流动的DeepSeekR1满血版进行演示。”就无法把问题回答准确。原创 2025-03-24 18:10:23 · 1570 阅读 · 0 评论 -
大模型AI应用系统Dify,RAGFlow,MaxKB,FastGPT,OpenWebUI详细对比
企业知识管理:MaxKB(知识图谱 + 权限管理)或 FastGPT(轻量级 RAG 构建)。深度文档问答:RAGFlow(灵活检索逻辑)。AI 应用开发:Dify(全流程开发)或 FastGPT(RAG 流程编排)。模型部署与测试:OpenWebUI(本地即开即用)。原创 2025-03-20 15:24:49 · 2778 阅读 · 0 评论 -
从能力释放到生态重构:Model Context Protocol 的技术跃迁
正如USB-C为设备连接各类外设配件提供了标准化连接方式,MCP则为AI模型连接不同数据源和工具建立了统一标准。MCP由Anthropic公司提出并开源,其核心架构包括MCP服务器和MCP客户端。MCP服务器负责暴露数据,而MCP客户端则负责访问这些数据,从而实现大模型与外部数据源的无缝集成。MCP 的核心遵循客户端-服务器架构,其中主机应用程序可以连接到多个服务器。:MCP 服务器可以连接到的互联网(例如,通过 API)提供的外部系统。越来越多的预构建集成,您的大语言模型可以直接接入。原创 2025-03-18 19:20:54 · 1081 阅读 · 0 评论