准确率:所有模型预测为正例的样本中,实际为正例的比例,关注是否有误报。
召回率:所有实际为正例的样本中,预测为正例的比例,关注的是漏报。
一、数据准备
数据预处理和划分数据集
import pandas as pd # 用于数据处理和分析,可处理表格数据。
import matplotlib.pyplot as plt # 用于绘制各种类型的图表。
import seaborn as sns # 基于matplotlib的高级绘图库,绘制更美观的统计图
import numpy as np # 用于数值计算,提供高效数组操作
# 设置中文字体(解决中文显示问题)
plt.rcParams['font.sans-serif'] = ['SimHei'] # Windows系统常用黑体字体
plt.rcParams['axes.unicode_minus'] = False # 正常显示负号
# 读取数据
dt = pd.read_csv('data.csv')
# 定义嵌套映射字典,用于标签编码
mapping = {
'Home Ownership':{
'Home Mortgage': 3,
'Rent': 1,
'Own Home': 0,
'Have Mortgage': 2
},
'Years in current job':{
'< 1 year': 0,
'1 year': 1,
'2 years': 2,
'3 years': 3,
'4 years': 4,
'5 years': 5,
'6 years': 6,
'7 years': 7,
'8 years': 8,
'9 years': 9,
'10+ years': 10
},
'Term':{
'Short Term': 0,
'Long Term': 1
}
}
# map()方法进行映射
dt['Home Ownership'] = dt['Home Ownership'].map(mapping['Home Ownership'])
dt['Years in current job'] = dt['Years in current job'].map(mapping['Years in current job'])
# 对特征Purpose进行独热编码,get_dummies()
# pd.get_dummies(待处理数据集, columns= ['待处理列'])
dt = pd.get_dummies(dt, columns=['Purpose'])
# 接下来找到"独热编码"生成的新特征,将bool型转换为int型
data = pd.read_csv('data.csv')
for i in dt.columns:
if i not in data.columns:
dt[i] = dt[i].astype(int)
# Term 0-1映射
dt['Term'] = dt['Term'].map(mapping['Term'])
dt.rename(columns={'Term': 'Long Term'}, inplace=True) # 重命名列
# 填补缺失值
for i in dt.columns:
if dt[i].isnull().sum() > 0:
mode = dt[i].mode()[0] # 众数
# median = dt[i].median() # 中位数
dt[i].fillna(mode, inplace=True) # 缺失值填补
# 最开始也说了 很多调参函数自带交叉验证,甚至是必选的参数,想要不交叉验证反而会麻烦许多
# 所以这里还是只划分一次数据集
from sklearn.model_selection import train_test_split
X = dt.drop(['Credit Default'], axis=1) # 特征,axis=1表示按列删除
y = dt['Credit Default'] # 标签
# 按照8:2划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
二、过采样
- 过采样一般包含两种方法:随机过采样和SMOTE过采样。
- 过采样是把少的类别补充到和多的类别一样多,欠采样是把多的类别减少到和少的类别一样多。
- 一般都是缺数据,所以很少用欠采样。
1、随机过采样
随机过采样是从少数类中随机选取样本,并将其复制后添加到训练集。步骤如下:
- 确定少数类的样本数。
- 从少数类中随机选择样本,并将其复制。
- 将复制的样本添加到训练集。
优点是简单易实现,缺点是可能导致模型过拟合,因为复制样本并未提供新的信息。
# 需要安装imbalanced-learn库
# 这个库是专门用于处理不平衡数据集的,提供了多种重采样方法
# !pip install -U imbalanced-learn
使用随机过采样优化模型:
# 1. 随机过采样
from imblearn.over_sampling import RandomOverSampler
ros = RandomOverSampler(random_state=42) # 创建随机过采样对象
X_train_ros, y_train_ros = ros.fit_resample(X_train, y_train) # 对训练集进行过采样
print("随机过采样后训练集的形状:", X_train_ros.shape, y_train_ros.shape )
# 训练随机森林模型
rf_model_ros = RandomForestClassifier(random_state=42)
start_time = time.time()
rf_model_ros.fit(X_train_ros, y_train_ros)
end_time = time.time()
print(f"随机过采样后的随机森林模型训练时长:{end_time - start_time:.4f}秒。",)
# 在测试集上进行预测
rf_pred = rf_model_ros.predict(X_test)
print("\n过采样处理后的随机森林模型的分类报告:")
print(classification_report(y_test, rf_pred))
print("过采样处理后的随机森林模型的混淆矩阵:")
print(confusion_matrix(y_test, rf_pred))
输出:
随机过采样后训练集的形状: (8656, 31) (8656,)
随机过采样后的随机森林模型训练时长:1.8488秒。
过采样处理后的随机森林模型的分类报告:
precision recall f1-score support
0 0.77 0.93 0.84 1059
1 0.67 0.34 0.46 441
accuracy 0.76 1500
macro avg 0.72 0.64 0.65 1500
weighted avg 0.74 0.76 0.73 1500
过采样处理后的随机森林模型的混淆矩阵:
[[985 74]
[289 152]]
2、smote过采样
smote是合成样本的方法。
SMOTE的核心思想是通过在少数类样本的特征空间中进行插值来合成新的样本。
- 对于少数类中的每个样本,计算它与少数类中其他样本的距离,得到其k近邻(一般k取5或其它合适的值)。
- 从k近邻中随机选择一个样本。
- 计算选定的近邻样本与原始样本之间的差值。
- 生成一个在0-1之间的随机数。
- 将差值乘以随机数,然后加到原始样本中没得到一个新的合成样本。
- 重复上述部分,直到合成出足够数量的少数类样本,使的少数类和多数类样本数量达到某种平衡。
- 使用过采样后的数据集训练模型并评估模型性能。
使用SMOTE过采样优化模型:
# 2. SMOTE过采样
from imblearn.over_sampling import SMOTE
smote = SMOTE(random_state=42)
X_train_smote, y_train_smote = smote.fit_resample(X_train, y_train)
print("SMOTE过采样后的训练集的形状:", X_train_smote.shape, y_train_smote.shape)
# 训练随机森林模型
rf_model_smote = RandomForestClassifier(random_state=42)
start_time = time.time()
rf_model_smote.fit(X_train_smote, y_train_smote)
end_time = time.time()
print(f"随机过采样后的随机森林模型训练时长:{end_time - start_time:.4f}秒。",)
# 在测试集上进行预测
rf_pred = rf_model_smote.predict(X_test)
print("\nSMOTE处理后的随机森林模型的分类报告:")
print(classification_report(y_test, rf_pred))
print("SMOTE处理后的随机森林模型的混淆矩阵:")
print(confusion_matrix(y_test, rf_pred))
输出:
SMOTE过采样后的训练集的形状: (8656, 31) (8656,)
随机过采样后的随机森林模型训练时长:2.1465秒。
SMOTE处理后的随机森林模型的分类报告:
precision recall f1-score support
0 0.77 0.92 0.84 1059
1 0.64 0.35 0.45 441
accuracy 0.75 1500
macro avg 0.70 0.63 0.64 1500
weighted avg 0.73 0.75 0.72 1500
SMOTE处理后的随机森林模型的混淆矩阵:
[[972 87]
[288 153]]
三、修改权重
在处理类别不平衡的数据集时,标准机器学习算法(如默认的随机森林)可能会过度偏向多数类,导致对少数类的预测性能很差。为了解决这个问题,常用的策略包括在数据层面(采样)和算法层面进行调整。本文重点讨论两种算法层面的方法:修改类别权重和修改分类阈值。
-
挑战: 标准算法的优化目标(如最小化整体误差)会使其优先拟合多数类,因为这样做能更快地降低总误差。
-
后果: 对少数类样本的识别能力不足(低召回率),即使整体准确率看起来很高。
-
目标: 提高模型对少数类的预测性能,通常关注召回率(Recall)、F1分数(F1-Score)、AUC-PR等指标。
方法一:修改类别权重
(Cost-Sensitive Learning)
这种方法在模型训练阶段介入,通过调整不同类别样本对损失函数的贡献来影响模型的学习过程。
-
核心思想: 为不同类别的错误分类分配不同的“代价”或“权重”。通常,将少数类样本错分为多数类的代价设置得远高于反过来的情况。
-
作用机制: 修改模型的损失函数。当模型错误分类一个具有高权重的少数类样本时,会受到更大的惩罚(更高的损失值)。
-
目的: 迫使学习算法在优化参数时更加关注少数类,努力学习到一个能够更好地区分少数类的决策边界。它试图从根本上让模型“学会”识别少数类。
-
影响: 直接改变模型的参数学习过程和最终学到的模型本身。
在 RandomForestClassifier
中应用 (class_weight
参数)
Scikit-learn 中的 RandomForestClassifier
提供了 class_weight
参数来实现代价敏感学习:
-
class_weight=None
(默认值):-
所有类别被赋予**相同的权重 (1)**。
-
算法在构建树和计算分裂标准(如基尼不纯度)时,不区分多数类和少数类。
-
在不平衡数据上,这自然导致模型偏向多数类。
-
-
class_weight='balanced'
:-
算法自动根据训练数据
y
中各类别的频率来调整权重。 -
权重计算方式与类别频率成反比:
weight = n_samples / (n_classes * np.bincount(y))
。 -
这意味着少数类样本获得更高的权重,多数类样本获得较低的权重。
-
目的是在训练中“放大”少数类的重要性,促使模型提升对少数类的识别能力。
-
-
class_weight={dict}
(手动设置):-
可以提供一个字典,手动为每个类别标签指定权重,例如
class_weight={0: 1, 1: 10}
表示类别 1 的权重是类别 0 的 10 倍。
-
- 优点:
-
从模型学习的根本上解决问题。
-
可能得到泛化能力更强的模型。
-
许多常用算法内置支持,实现方便。
-
-
注意: 使用
class_weight
时,推荐结合交叉验证(特别是StratifiedKFold
)来可靠地评估其效果和模型的稳定性。
方法二:修改分类阈值
这种方法在模型训练完成之后介入,通过调整最终分类的决策规则来平衡不同类型的错误。
-
核心思想: 改变将模型输出的概率(或得分)映射到最终类别标签的门槛。
-
作用机制: 模型通常输出一个样本属于正类(通常设为少数类)的概率
p
。默认情况下,如果p > 0.5
,则预测为正类。修改阈值意味着改变这个0.5
,例如,如果要求更高的召回率,可以将阈值降低(如p > 0.3
就预测为正类)。 -
目的: 在不改变已训练好的模型的情况下,根据业务需求调整精确率(Precision)和召回率(Recall)之间的权衡。通常用于提高少数类的召回率(但可能会牺牲精确率)。
-
影响: 不改变模型学到的参数或决策边界本身,只改变如何解释模型的输出。
- 优点:
-
实现简单,无需重新训练模型。
-
非常直观,可以直接在 PR 曲线或 ROC 曲线上选择操作点。
-
适用于任何输出概率或分数的模型。
-
- 缺点:
-
治标不治本。如果模型本身就没学好如何区分少数类(概率输出普遍很低),单纯降低阈值可能效果有限或导致大量误报(低精确率)。
-
核心差异总结
特性 | 修改类别权重 (class_weight ) | 修改分类阈值 |
---|---|---|
作用阶段 | 模型训练时 | 模型预测(或评估)时 |
作用对象 | 模型的损失函数、参数学习过程 | 模型输出概率/分数到最终预测的决策规则 |
对模型影响 | 改变学习到的模型本身和决策边界 | 不改变已学习到的模型 |
性质 | 根本性调整,代价敏感学习 | 后处理性质的调整 |
目标侧重 | 学习一个内在区分能力更强的模型 | 在现有模型上调整性能指标的权衡 |
实现方式 | 设置算法的参数(如 class_weight='balanced' ) | 在预测后应用不同的概率门槛 |
实践建议
-
评估指标先行: 明确你的目标,使用适合不平衡数据的指标(Recall, F1-Score, AUC-PR, Balanced Accuracy, MCC)来评估模型。
-
优先尝试根本方法: 通常建议首先尝试修改权重 (
class_weight='balanced'
) 或 **数据采样方法 (如 SMOTE)**,因为它们试图从源头改善模型学习。 -
交叉验证评估: 在使用
class_weight
或采样方法时,务必使用分层交叉验证 (Stratified K-Fold) 来获得对模型性能的可靠估计。 -
阈值调整作为补充: 修改阈值可以作为一种补充手段或最后的微调。即使使用了权重调整,有时仍需根据具体的业务需求(如必须达到某个召回率水平)来调整阈值,找到最佳的操作点。
-
组合策略: 有时结合多种方法(如 SMOTE +
class_weight
)可能会产生更好的结果。
总之,修改权重旨在训练一个“更好”的模型,而修改阈值是在一个“已有”模型上调整其表现。理解它们的差异有助于你选择更合适的策略来应对不平衡数据集的挑战。
四、使用修改权重训练模型
1、基准模型
from sklearn.ensemble import RandomForestClassifier # 随机森林分类器
from sklearn.metrics import accuracy_score, make_scorer, precision_score, f1_score, recall_score # 评估指标
from sklearn.metrics import classification_report, confusion_matrix # 分类报告、混淆矩阵
from sklearn.model_selection import StratifiedKFold, cross_validate # 引入分层 K 折和交叉验证工具
import numpy as np # 用于计算平均值
import warnings
from sklearn.utils import class_weight # 用于忽略警告信息
warnings.filterwarnings('ignore') # 忽略所有警告信息
import time
# 假设 X_train, y_train, X_test, y_test 已经准备好
# X_train, y_train用于交叉验证和模型训练
# X_test, y_test用于模型评估
# ---1. 默认参数随机森林---
# 评估基准模型,这里不需要验证集
print("---1. 默认参数随机森林(训练集->测试集)---")
start_time = time.time() # 记录开始时间
rf_model_default = RandomForestClassifier(random_state=42) # 初始化模型
rf_model_default.fit(X_train, y_train) # 模型训练
rf_pred_default = rf_model_default.predict(X_test) # 模型预测
end_time = time.time() # 记录结束时间
print(f"训练与预测耗时{end_time - start_time:.4f}秒。")
print("\n默认随机森林 在测试集上的分类报告:")
print(classification_report(y_test, rf_pred_default))
print("\n默认随机森林 在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, rf_pred_default))
print("-" * 50)
输出:
---1. 默认参数随机森林(训练集->测试集)---
训练与预测耗时1.5189秒。
默认随机森林 在测试集上的分类报告:
precision recall f1-score support
0 0.77 0.97 0.86 1059
1 0.79 0.30 0.43 441
accuracy 0.77 1500
macro avg 0.78 0.63 0.64 1500
weighted avg 0.77 0.77 0.73 1500
默认随机森林 在测试集上的混淆矩阵:
[[1023 36]
[ 309 132]]
--------------------------------------------------
2、修改类别权重
训练模型,并在测试集上评估
# --- 3. 使用权重训练最终模型,并在测试集上评估 ---
print("--- 3. 使用权重训练最终模型(整个训练集),并在测试集上评估 ---")
start_time = time.time()
# 使用与交叉验证中相同的设置来训练模型
rf_model_weighted_final = RandomForestClassifier(
random_state=42,
class_weight='balanced'
)
rf_model_weighted_final.fit(X_train, y_train) # 在整个训练集上进行训练
rf_pred_weighted = rf_model_weighted_final.predict(X_test) # 在测试集上进行预测
end_time = time.time()
print(f"最终模型训练与预测耗时:{end_time - start_time:.4f}秒。")
print("\n带权重随机森林 在测试集上的分类报告:")
print(classification_report(y_test, rf_pred_weighted))
print("带权重随机森林 在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, rf_pred_weighted))
print("-" * 50)
输出:
--- 3. 使用权重训练最终模型(整个训练集),并在测试集上评估 ---
最终模型训练与预测耗时:1.4228秒。
带权重随机森林 在测试集上的分类报告:
precision recall f1-score support
0 0.76 0.97 0.86 1059
1 0.81 0.27 0.41 441
accuracy 0.77 1500
macro avg 0.78 0.62 0.63 1500
weighted avg 0.78 0.77 0.72 1500
带权重随机森林 在测试集上的混淆矩阵:
[[1030 29]
[ 320 121]]
--------------------------------------------------
对比总结:
# 对比总结
print("性能对比(测试集上的少数类召回率 Recall):")
recall_default = recall_score(y_test, rf_pred_default, pos_label=minority_label)
recall_weighted = recall_score(y_test, rf_pred_weighted, pos_label=minority_label)
print(f"默认模型:{recall_default:.4f}")
print(f"带权重模型:{recall_weighted:.4f}")
输出:
性能对比(测试集上的少数类召回率 Recall):
默认模型:0.2993
带权重模型:0.2744
带权重训练的模型最终效果反而变差了
3、修改权重 + 交叉验证
(在训练集上进行 交叉验证)
# --- 2. 带权重的随机森林 + 交叉验证(在训练集上进行CV) ---
print("--- 2. 带权重的随机森林 + 交叉验证(在训练集上进行) ---")
# 确定少数类标签(重要!!!)
# 假设是二分类问题,我们需要知道那个是少数类标签才能正确解读 recall, precision, f1
# 例如,如果标签是0 和 1 ,可以这样查看:
counts = np.bincount(y_train) # 统计训练集各类别样本数量
minority_label = np.argmin(counts) # 找到计数最少的类别的标签
majority_label = np.argmax(counts)
print(f"训练集中各类别数量:{counts}")
print(f"少数类标签:{minority_label}, 多数类标签:{majority_label}")
# !! 下面的 scorer 将使用这个 minority_label !!
# 定义带权重的模型
rf_model_weighted = RandomForestClassifier(
random_state=42,
class_weight='balanced' # 自动根据类别频率调整权重
# class_weight={minority_label:10, majority_label:1} # 或者可以手动设置权重
)
# 设置交叉验证策略(使用 StratifiedKFold 保证每折类别比例相似)
cv_strategy = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) # 5折交叉验证
# 定义用于交叉验证的评估指标
# 特别关注少数类的指标,使用 make_scorer 指定 pos_label
# 注意:如果少数类标签不是 1,需要修改 pos_label
scoring = {
'accuracy':'accuracy',
'precision_minority':make_scorer(precision_score, pos_label=minority_label, zero_division=0),
'recall_minority':make_scorer(recall_score, pos_label=minority_label),
'f1_minority':make_scorer(f1_score, pos_label=minority_label)
}
print(f"开始进行{cv_strategy.get_n_splits()}折交叉验证...")
start_time_cv = time.time()
# 执行交叉验证(训练集上)
# cross_validate 会自动的完成训练和评估过程
cv_results = cross_validate(
estimator=rf_model_weighted,
X=X_train,
y=y_train,
cv=cv_strategy,
n_jobs=-1,
scoring=scoring,
return_train_score=False # 不返回训练集得分,更关心测试折的得分
)
end_time_cv = time.time()
print(f"交叉验证耗时:{end_time_cv - start_time_cv:.4f}秒。")
# 打印交叉验证结果的平均值
print("\n带权重随机森林 交叉验证平均性能(基于训练集划分):")
for metric_name, scores in cv_results.items():
if metric_name.startswith('test_'): # 我们关心的是在验证折上的表现
# 提取指标名称(去掉'test_'前缀)
clean_netric_name = metric_name.split('test_')[1]
print(f" 平均{clean_netric_name}:{np.mean(scores):.4f}(+/-{np.std(scores):.4f})")
print("-" * 50)
输出:
--- 2. 带权重的随机森林 + 交叉验证(在训练集上进行) ---
训练集中各类别数量:[4328 1672]
少数类标签:1, 多数类标签:0
开始进行5折交叉验证...
交叉验证耗时:3.6177秒。
带权重随机森林 交叉验证平均性能(基于训练集划分):
平均accuracy:0.7798(+/-0.0085)
平均precision_minority:0.8291(+/-0.0182)
平均recall_minority:0.2650(+/-0.0400)
平均f1_minority:0.3998(+/-0.0455)
--------------------------------------------------
代码解析:
1. StratifiedKFold (分层K折交叉验证器)
设置交叉验证策略(使用 StratifiedKFold 保证每折类别比例相似)
cv_strategy = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
参数说明:
- n_splits=5 :将数据集划分为5个互斥子集(5折)
- shuffle=True :分割前打乱数据顺序
- random_state=42 :固定随机种子保证结果可复现
- 返回值:交叉验证策略对象
2. scoring (评估指标字典)
用于交叉验证的评估指标
scoring = {
'accuracy': 'accuracy',
'precision_minority': make_scorer(precision_score, pos_label=minority_label),
'recall_minority': make_scorer(recall_score, pos_label=minority_label),
'f1_minority': make_scorer(f1_score, pos_label=minority_label)
}
自定义指标原理:
- make_scorer() :将标准指标函数包装成交叉验证可用的评估器
- pos_label=minority_label :指定少数类为正类(默认正类为1)
- zero_division=0 :当出现除零情况时返回0而非报错
3. cross_validate (交叉验证执行器)
- cross_validate() 会自动的完成训练和评估过程
cv_results = cross_validate(
estimator=rf_model_weighted,
X=X_train,
y=y_train,
cv=cv_strategy,
n_jobs=-1,
scoring=scoring,
return_train_score=False # 不返回训练集得分,更关心测试折的得分
)
参数说明:
- estimator :带权重的随机森林模型
- cv :使用定义的分层交叉验证策略
- n_jobs=-1 :使用所有CPU核心并行计算
- return_train_score=False :不返回训练集得分
返回值:包含各折评估结果的字典
返回值结构示例:
{
'test_accuracy': [0.85, 0.83, 0.86...], # 各折准确率
'test_recall_minority': [0.72, 0.75, 0.68...], # 各折少数类召回率
# ...其他指标
}
4.cv_results解析循环
for metric_name, scores in cv_results.items():
if metric_name.startswith('test_'): # 筛选测试集评估指标
# 提取指标名称(去掉'test_'前缀)
clean_netric_name = metric_name.split('test_')[1]
print(f" 平均{clean_netric_name}:{np.mean(scores):.4f}(+/-{np.std(scores):.4f})")
1. startswith('test_') :筛选出测试集(验证折)的评估指标
- 在交叉验证结果中,指标名称会被自动添加前缀:
- test_accuracy → 验证集的准确率
- test_recall_minority → 验证集的少数类召回率
- 排除训练集指标(如 train_指标名称 )和其他非测试指标
2. split('test_')[1] :字符串切割操作
- 示例: "test_recall_minority" → 切割为 ['', 'recall_minority']
- 取索引 [1] 得到干净的指标名称 recall_minority
- 最终打印时会显示更简洁的指标名称(不带test_前缀)
3.np.mean(scores) :计算各折得分的平均值,反映模型整体性能
4.np.std(scores) :计算标准差,衡量模型表现的稳定性
输出示例:
平均 recall_minority: 0.7567 (+/- 0.0234)
表示少数类召回率平均75.67%,各折结果波动约2.34%