深度学习:参数(parameters)和超参数(hyperparameters)

本文详细解释了在人工智能算法中参数与超参数的区别。参数是由模型通过学习得到的变量,如权重和偏置;而超参数是根据经验设定,影响模型训练过程的设置,如迭代次数、学习速率等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 参数(parameters)/模型参数

 由模型通过学习得到的变量,比如权重偏置

2. 超参数(hyperparameters)/算法参数

   根据经验进行设定影响到权重和偏置的大小,比如迭代次数、隐藏层的层数、每层神经元的个数、学习速率

 

转载于:https://www.cnblogs.com/huiAlex/p/9138498.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值