多模态AI模型:读懂医学影像的超级大脑

2025年初,全球首款通过美国FDA认证的“AI放射学助手”横空出世。这款基于多模态大语言模型(LMMs)的系统,不仅能秒读CT/MRI影像生成诊断报告,还能结合患者病史提出治疗方案建议。在临床试验中,其对肺癌筛查的敏感度达到98.7%,误诊率仅1.2%,甚至比资深放射科医生还精准。这场由代码驱动的医疗革命,正悄然改变着300万放射科医生的职业命运。

LLMs和LMMs在放射学和医疗保健领域的不同应用

01 大语言模型:医疗领域的智能助手

大语言模型,如GPT-4等,凭借其卓越的复杂推理和理解能力,在医疗保健领域展现出了巨大的应用前景。它们可以处理和分析大量的文本数据,为医生提供决策支持,为患者提供个性化的医疗服务。

不同的自然语言处理(NLP)和语言建模算法及技术的引入时间线

  • 应用场景

1)放射学报告的自动化与优化:

大语言模型能够标记并纠正放射学报告中的常见错误,以适合患者理解的水平解释放射学报告结果,并根据患者病史和影像学表现提出鉴别诊断。例如,Gertz等人(2024)的研究表明,GPT-4在检测放射学报告错误方面具有潜在应用价值。此外,大语言模型还可以生成简洁的临床总结,帮助放射科医生快速把握患者的关键信息,从而提高诊断效率和准确性。

2)临床决策支持:

大语言模型可以根据患者的病史、成像结果以及临床指南,为医生提供诊断和治疗建议。例如,Gertz等人(2023)的研究展示了GPT-4在自动化确定放射学检查和协议方面的可行性。通过整合患者的病史和成像数据,大语言模型能够为医生提供个性化的检查建议,从而提高诊断的准确性和效率。

3)医疗教育与患者沟通:

大语言模型可以用于教育患者和放射学实习生,解释复杂医学概念,简化诊断报告,回答有关放射学检查程序的问题。例如,Berigan等人(2024)的研究表明,大语言模型生成的放射学报告总结可以提高患者的理解度。此外,大语言模型还可以通过聊天机器人的形式,为患者提供个性化的医疗咨询和解答,增强患者对医疗过程的参与感和信任度。

  • 技术原理

大语言模型的开发涉及多个关键技术,包括词元嵌入、变压器网络、自监督预训练和微调等。词元嵌入将文本转换为数值向量,表示单词的语义含义;变压器网络通过自注意力机制处理序列数据;自监督预训练利用大量未标记的文本数据训练模型,学习语言的规则和模式;微调则是在预训练模型的基础上,针对特定任务进行有监督的学习。

词元化将文本分解为更基本的单元

02 大型多模态模型:解锁医学影像新潜能

随着技术的发展,大语言模型已经不再局限于文本处理,大型多模态模型(LMMs)应运而生。这些模型能够处理多种数据类型,如图像、视频、音频等,为医学影像学带来了新的可能性。

  • 多模态模型的类型与应用

1)视觉 - 语言模型:

这类模型处理图像和文本,针对特定的视觉 - 语言任务进行优化,如视觉问答、自动报告生成等。例如,Zhang等人(2024)开发了一种通用的视觉 - 语言基础模型,用于多种生物医学任务。这些模型能够理解图像内容,并生成相应的文本描述,为医生提供更直观的诊断信息。

2)多模态数据融合:

多模态模型能够整合多种数据类型,为医生提供更全面的诊断信息。例如,在核医学中,LMMs可以综合患者的病史、成像结果和实验室数据,提供更准确的诊断和治疗建议。通过整合多源数据,多模态模型能够捕捉到单一模态数据所无法揭示的复杂关系和模式,从而提高诊断的准确性和可靠性。

  • 技术实现

多模态模型的开发涉及多种技术,包括对比学习、交叉注意力和早期融合等。对比学习通过创建一个联合的视觉 - 语言嵌入空间,使模型能够学习不同数据类型之间的映射关系;交叉注意力则通过查询、键和值向量的交互,实现不同模态数据的融合;早期融合则是将图像和文本的嵌入向量合并,输入到微调的模型中,使模型能够理解图像和文本的结合。

对比学习、交叉注意力和早期融合

03 未来展望

大语言模型和大型多模态模型的发展,预示着医疗保健领域将迎来一场深刻的变革。未来,这些模型将更加可靠,能够处理更复杂的任务,如容积成像和多通道成像模态的处理。此外,多模态智能体的发展将使AI能够自主实现复杂目标,如编写软件程序、优化医疗工作流程等。

  • 挑战与机遇

尽管前景光明,但目前仍面临一些挑战,如计算资源的需求、数据隐私和安全问题,以及模型的偏见和虚构信息等。然而,随着技术的进步和多方合作的加强,这些问题有望逐步得到解决。例如,开源基础模型的开发将降低模型开发的门槛,使更多的学术机构和医疗机构能够参与到模型的开发和应用中来。此外,数据共享和联邦学习等技术的发展,将有助于解决数据隐私和安全问题,促进医疗数据的合理利用。

  • 医生的角色

在AI技术的推动下,医生的角色将发生转变。他们将从繁重的文档工作中解放出来,更多地专注于患者的个性化治疗和复杂决策。同时,医生也需要不断学习和适应新技术,以确保能够有效地利用AI工具,为患者提供最佳的医疗服务。医生与AI的协作将更加紧密,形成一种互补的关系,共同推动医疗质量的提升。

  • 利好患者

患者将是这场医疗变革的最终受益者。AI技术的应用将使医疗服务更加高效、精准和个性化。患者将享受到更快速的诊断、更准确的治疗方案和更优质的医疗体验。此外,AI技术还将促进医疗资源的合理分配,使更多患者能够获得优质的医疗服务,缩小医疗差距。

04 结语

大语言模型和大型多模态模型的出现,为医疗保健领域带来了前所未有的机遇。它们不仅能够提高医疗效率,优化医疗服务质量,还能够为医生和患者提供更精准的诊断和治疗建议。随着技术的不断进步,我们有理由相信,AI将在医疗领域发挥越来越重要的作用,推动医疗行业迈向新的高度。医生和医疗机构应积极拥抱这些变化,充分利用AI技术,为患者带来更好的医疗体验。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值