Text2SQL零代码实战!RAGFlow 实现自然语言转 SQL 的终极指南

在企业大模型应用方面,Text2SQL一直是应用热点。大家都希望小嘴一张,就完成一系列数据提取和分析工作。

但是,使用大模型自动理解业务需求,实现 SQL 代码编写和代码执行一直都存在技术难点。传统的 Text2SQL 方案,往往依赖大模型微调,对于中小企业而言,带来非常高的应用成本。

今天,介绍一个方法,使用开源 RAG 框架RAGFlow,应用知识库检索与大模型推理结合,不需要对模型做任何微调,只需要仅需配置少量结构化数据即可实现精准SQL生成,实现指定数据查询、负责查询、计算,跨表计算等多种场景。

老习惯,先看效果,再看执行。

一、表内容和效果简单说明

我的数据库里存了四张表:用户表、制造商表、商品表和销售表。内容分别如下:

1-表明细查询测试

问题:请问商品 智能手机 X 还剩多少库存。

难度分析:智能体需要理解问题所在的表,完成表格选择(商品表),字段查询(商品名称)和目标字段(库存)输出。

原表中符合要求的记录:

Image

测试结果:通过,两条记录库存均完成识别和输出。

Image

2-表明细查询和合并计算

问题:请问商品 智能手机 X 还剩多少总库存。

难度分析:智能体需要理解问题所在的表,完成表格选择(商品表),字段查询(商品名称)和目标字段(库存)求和计算输出。

原表中符合要求的记录(同上):

Image

测试结果:通过,两条记录库存均完成识别,并对库存求和输出。

Image

3- 跨表关联

问题:请问商品 智能手机 X 的制造商是谁

难度分析:智能体需要理解问题所在的表,完成表格选择(商品表),字段查询(商品名称)和目标字段(制造商id)。并返回制造商表,使用制造商
id,提取制造商信息,再作输出。

原表中符合要求的记录:

Image

Image

测试结果:通过,两条智能手机 X 的制造商都是商家_001。

Image

4- 复杂查询

问题:查询连续 3 个月销量下降的商品

难度等级:🌟🌟🌟🌟🌟

难度分析:智能体需要理解问题所在的表,完成表格选择(销售表),字段查询(商品名称)和目标字段(销量),进行复杂销量比对(连续 3
个月销量下降),并返回商品信息。

原表中符合要求的记录,分别有商品 1、2、4、5 这四个商品符合要求。

商品 1,8-10 月销量下滑。

Image

商品 2,5-7 月销量下滑。

Image

商品4,5-8 月销量下滑。

Image

商品 5,4-6 月销量下滑。

Image

测试结果:通过,4 个商品连续 3 个月销量下降,均被有效识别。

Image

5- 指定要求复杂查询

问题:查询2024 年 4-6 月,连续 3 个月销量下降的商品

难度等级:🌟🌟🌟🌟🌟

难度分析:智能体需要理解问题所在的表,完成表格选择(销售表),字段查询(商品名称)和目标字段(销量),限定日期(4-6
月),进行复杂销量比对(连续 3 个月销量下降),并返回商品id。

原表中,只有商品5 符合要求。

Image

测试结果:通过,商品5 ,被有效识别出。

Image

6- 再上一点点难度

问题:查询2024 年 4-6 月,连续 3 个月销量下降的商品详细信息。

难度等级:🌟🌟🌟🌟🌟

难度分析:智能体需要理解问题所在的表,完成表格选择(销售表),字段查询(商品名称)和目标字段(销量),限定日期(4-6
月),进行复杂销量比对(连续 3 个月销量下降),并返回商品id,找到商品明细。

Image

测试结果:通过。

Image

接下来,手把手演示如何用RAGFlow搭建一个能理解业务需求的Text2SQL智能助手。

我所使用的 RagFlow 框架。感兴趣的可以自行安装。安装过程省略。

github 地址:https://github.com/infiniflow/ragflow/blob/main/README_zh.md

一、核心流程

这是官方教程提出的使用 RagFlow 解决 Text2SQL 的流程。

简单来说,就是我们准备好足够让大模型理解数据库内的表格、字段的知识库,以及理解从问题到 SQL 代表的问答方法。大模型就可以通过理解用户问题、查询知识库信息、形成 SQL 代码、并执行 SQL,完成从指定数据库里提取相关信息的工作。

Image

官方教程地址:https://ragflow.io/blog/implementing-text2sql-with-ragflow

二、准备工作:3类核心知识库

关键点:Text2SQL的准确性取决于知识库质量,需提前准备以下数据(参考官方文档 )

DDL知识库
作用:提供数据库表结构(如字段类型、主键约束)

示例:

CREATE TABLE `users` (
  `id` INT NOT NULL AUTO_INCREMENT,
  `username` VARCHAR(50) NOT NULL,
  `password` VARCHAR(50) NOT NULL,
  `email` VARCHAR(100),
  `mobile` VARCHAR(20),
  `create_time` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
  `update_time` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
  PRIMARY KEY (`id`),
  UNIQUE KEY `uk_username` (`username`),
  UNIQUE KEY `uk_email` (`email`),
  UNIQUE KEY `uk_mobile` (`mobile`)
);

数据来源:从HuggingFace下载标准模板(后台私信“Text2SQL”提供)

2. DB Description知识库

### 用户表(users)
用户表用于存储网站或应用的用户信息。以下是该表中每个字段的含义:
- `id`: 这是一个整数类型的自增字段,作为用户的唯一标识符(主键)。每次添加新用户时,该字段会自动增加,确保每个用户都有一个唯一的ID。
- `username`: 字符串类型,用于存储用户的用户名。用户名通常是用户登录时使用的唯一标识符。
- `password`: 字符串类型,用于存储用户的密码。出于安全考虑,密码在存储前应进行加密处理。
- `email`: 字符串类型,用于存储用户的电子邮件地址。电子邮件地址可以是用户的另一个登录凭证,并且用于接收通知或重置密码。
- `mobile`: 字符串类型,用于存储用户的手机号码。手机号码可用于登录、接收短信通知或进行身份验证。
- `create_time`: 时间戳类型,记录用户账户创建的时间。默认值为当前时间。
- `update_time`: 时间戳类型,记录用户信息最后更新的时间。每次更新用户信息时,该字段都会自动更新为当前时间。

  • 作用:解释字段业务含义(如“order_date”代表订单创建时间)
  • 示例:
    数据来源:从HuggingFace下载标准模板(后台私信“Text2SQL”提供)

3. Q->SQL知识库

  • 用户问题:“查询2023年销量TOP10商品”
  • 对应SQL:SELECT product, SUM(quantity) FROM sales WHERE YEAR(order_date)=2023 GROUP BY product ORDER BY SUM(quantity) DESC LIMIT 10;
  • 作用:存储自然语言与SQL的映射样本。这个对最终 SQL 代码的可执行性影响至关重要。
  • 示例:
    数据来源:从HuggingFace下载标准模板(后台私信“Text2SQL”提供)

二、准备工作:3类核心知识库

步骤1:创建DB Assistant Agent
1.进入RAGFlow Agent工作台,选择内置DB Assistant模板
Image

绑定目标数据库(支持MySQL/PostgreSQL等)
Image

步骤2:配置知识库参数(核心!)
DDL 知识库配置:
使用 General 切割,块 Token 数选择 8,分段标识符为;。

Image

当你看到知识库内的分块,已经实现一个表的建表语句一个块的时候,就代表配置成功了。

Image

DSL 知识库配置:
同样使用 General 切割,但是块 Token 数选择 128,分段标识符为#。

Image

当你看到知识库内的分块,已经实现一个表的表及字段说明一个块的时候,就代表配置成功了。

Image

Q->SQL知识库配置:
这部分内容比较特殊,因为我们配置的知识库导入格式是 csv,这个 csv 里有两列内容,分别是 query 和 sql。例如:

Image

所以,配置方法需要选择 Q&A。

Image

当你看到知识库内的分块,已经实现Question 和 Answer 这样规律问答对的时候,就代表配置成功了。

Image

步骤3:Agent 配置知识库
Agent 中的 DDL 选择数据库配置。

Image

接下来,依次如法炮制。

Image

Image

步骤4:测试与优化
进入 Agent 平台,点击“运行”按钮,我们就可以进行问答测试了。

案例:用户提问“我们现在有多少个用户”

Image

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值