这两年,大模型从实验室里的高冷研究,走到每个程序员、学生、转行者的聊天框和职业规划表里。
几乎每天都有人来问我:
- “师兄,我是做后端的,能不能转大模型?”
- “我在看一些课程,不知道该学哪些才有用?”
- “我试着搭了个模型,发现全是坑,是不是我不适合?”
今天这篇文章,我不打算讲那些泛泛而谈的大模型原理,我就站在一个“老转行人 + 老程序员 + 老训练营主理人”的角度,跟你聊聊:
大模型怎么转?适合哪些人?哪些方向对新手友好?又有哪些坑你必须避开?
文章有点长,但全是我这几年观察下来最真实的经验,如果你真的想搞懂大模型、入场不踩坑,建议认真读完,或先收藏慢慢看。
一、大模型≠ChatGPT,先搞清“全景图”再出发
说句真话,很多人对“大模型”的第一印象就是——ChatGPT。
但这只是它的"最上层",底下的基建、平台、算法、数据处理、推理部署……才是撑起整个技术栈的骨架。
入行大模型的4大方向
根据我帮学员投简历、对接企业需求的经验,大模型相关岗位基本可以分为这四类:
类型 | 岗位关键词 | 适合人群 |
---|---|---|
1. 数据方向 | 数据构建、预处理、标注、数据质量评估 | 适合零基础/转行者,入门门槛低,上手快 |
2. 平台方向 | 分布式训练、资源调度、模型流水线 | 适合工程背景(后端/DevOps/大数据) |
3. 应用方向 | LLM算法、RAG、AIGC、对话系统 | 适合有转行 |
4. 部署方向 | 模型压缩、推理加速、端侧部署 | 系统能力强、做过底层开发的人更有优势 |
为什么要先讲这个?
因为我见太多人一上来就“我要搞算法”、“我想调模型”,结果发现自己根本没有训练数据、搞不清pipeline、代码跑不起来,最后就放弃了。
这不是你不行,而是选错了切入角度。
二、新人最容易犯的3个典型误区
误区1:只想搞模型,根本没想清要解决什么问题
很多新手“理想中的工作”是:
- 在大厂模型组里调ChatGPT
- 每天改超参、训练、测试效果
但真实情况是:
- 真正“调模型”的人不到团队的5%
- 大部分新人做的都是“链路搭建 + 数据清洗 + demo验证”
建议你:把目标从“调模型”转成“做出能跑起来的模型服务”,哪怕是个对话demo,也比纸上谈兵有用得多。
误区2:盲目学习所有热门词,却没搞懂底层逻辑
LoRA、SFT、RLHF、vLLM、QLoRA……
很多人听到这些名词眼睛一亮,像打卡一样都想学一遍,但最后变成“啥都看过,啥都不会”。
其实大模型的学习应该是“问题驱动”,你要围绕业务问题,反推需要哪些技术。
举个例子:你要做一个知识问答机器人,那你至少得搞懂:
- 向量检索(RAG)
- 数据清洗和知识构建
- 模型部署(推理延迟控制)
而不是“我会LoRA,我也会SFT,但不知道该用在哪里”。
误区3:忽略工程能力,以为搞AI就不用写脚本了
不好意思,很多大模型工作,本质就是——工程活。
你要写爬虫拿数据,要用Python跑数据处理链路,要部署模型到服务器,还得调各种依赖和环境。
所以,不会写代码,只想看论文,是做不好大模型相关工作的。
你是做业务的,那就要能把AI工具接到真实系统;你是做平台的,那就要搞定分布式系统配置;你是做数据的,那就要能用脚本快速生成训练数据集。
三、哪个方向适合你入门?我来给点建议
结合过去100+个转行学员的真实路径,我来逐个拆解:
① 数据方向:新人最容易上手的黄金入口
别小看“做数据”,它其实是目前大模型里面最容易切入、最容易出成绩、最容易落地的方向。
你要学的内容包括:
- 数据清洗、过滤、格式统一
- 有毒数据识别(脏话、敏感内容)
- prompt-响应对构建
- 评测集设计(准确率、覆盖率等)
推荐工具链:
Python / Pandas / LangChain / label studio / 数据增强脚本 / Excel也能用
适合人群:
- 完全转行的小白
- 没有模型背景但逻辑好、细节控的人
注意事项:
- 千万不要小看数据清洗,它决定了你训练出来的模型质量
- 很多大公司现在就是因为数据链路做不好,效果再强的模型也不稳定
一句话总结:数据不是脏活累活,而是最容易打出成果的一块阵地。
② 平台方向:工程师转行首选,高价值低风险
如果你之前有写后端、搞大数据、做K8s、玩过分布式系统的经验,那这个方向太适合你了。
平台岗主要负责什么?
- 构建训练pipeline:数据加载、预处理、模型训练、评估
- GPU资源调度:混部、监控、资源管理
- 自动化训练/推理系统搭建
核心能力:
- Python + Shell 脚本能力
- 熟悉 Docker / Kubernetes
- 熟悉 DeepSpeed / FSDP / NCCL 等训练优化框架
项目思路:
- 搭建一个LoRA训练平台,接收数据即可训练
- 设计一个多GPU并行推理的小平台
风险点:
- 工程偏多,适合愿意写代码、搞部署的人
- 如果抗拒写脚本调系统,那就别碰了
③ 应用方向:最卷也最诱人的一块
这块是大模型最“显眼”的岗位,比如你看到的对话系统、AIGC生成工具、搜索问答、智能客服……都属于这个方向。
主要内容:
- Prompt工程:设计提示词结构,提高响应质量
- 多模态交互:文本+图像+语音的整合
- 应用系统接入:接第三方API、加上业务逻辑、部署上线
推荐学习路径:
- 掌握LangChain / LlamaIndex 等中间件
- 学会RAG基本实现(检索+生成)
- 理解如何评估一个大模型输出质量
注意:
- 想进这个方向,业务sense很关键。你得知道你解决的是什么问题。
- 对于简历来说,最好有真实场景demo,比如“帮某企业搭建了法务问答机器人”。
建议新手:先从数据方向做几轮项目,等理解了底层,再切入应用,胜率更高。
④ 部署方向:高门槛、高回报,但不是新手切入点
部署工程师是被严重低估的工种。为什么?
因为你一旦把推理效率提升了2倍,就是实实在在地给公司省钱了。
岗位常做的事:
- 推理加速:TensorRT、ONNX、vLLM、量化、裁剪
- 小模型构建:蒸馏、低秩分解、KV缓存复用
- 多卡部署:多租户并发服务、模型冷热加载优化
建议先别直接跳:
- 如果你没有系统开发背景 / 没有玩过CUDA / 没调过C++框架,就别硬上
- 更合理的做法:从平台转部署,从实战中积累经验
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型实战项目&项目源码👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战项目来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
为什么分享这些资料?
只要你是真心想学AI大模型,我这份资料就可以无偿分享给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!
这些资料真的有用吗?
这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。
资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈