题目描述
A、B两个人把苹果分为两堆,A希望按照他的计算规则等分苹果,他的计算规则是按照二进制加法计算,并且不计算进位
12+5=9(1100 + 0101 = 9),B的计算规则是十进制加法,包括正常进位,B希望在满足A的情况下获取苹果重量最多。
输入苹果的数量和每个苹果重量,输出满足A的情况下B获取的苹果总重量。
如果无法满足A的要求,输出-1。
数据范围
- 1 <= 总苹果数量 <= 20000
- 1 <= 每个苹果重量 <= 10000
输入描述
输入第一行是苹果数量:3
输入第二行是每个苹果重量:3 5 6
输出描述
输出第一行是B获取的苹果总重量:11
示例1
输入
3
3 5 6
输出
11
说明
示例2
输入
8
7258 6579 2602 6716 3050 3564 5396 1773
输出
35165
说明
解题思路
这道题目要求你在给定的条件下计算A和B两个人分苹果的结果。A的要求是按照二进制加法(不进位)等分苹果,而B希望在满足A的要求下获取苹果总重量的最大值。如果无法满足A的要求,则输出-1。
题目分析
-
二进制加法不进位:
- 二进制加法不进位的意思是直接对每一位进行相加,但不进行进位处理。
- 比如:12(1100)和5(0101)相加的结果是9(1001),因为在二进制表示中:
- 1+0 = 1
- 1+1 = 0(不进位)
- 0+0 = 0
- 0+1 = 1
-
题目要求:
- 你需要找到一个办法,把苹果分成两堆,使得两堆苹果的总重量按二进制加法(不进位)结果相等。
- 在满足这个条件的前提下,让B获取的苹果总重量最大。
示例分析
示例 1
- 输入:
3 3 5 6
- 分析:
- 可能的分法有:
- 3, 5 | 6
- 3, 6 | 5
- 5, 6 | 3
- 根据二进制加法规则(不进位),3 + 5 = 6,3 + 6 = 5,5 + 6 = 3。
- 通过手动验证,发现其中一堆可以是{5, 6},另一堆是{3},此时B获取的总重量最大为11。
- 可能的分法有:
示例 2: