华为OD机考2025B卷 - DNA序列(Java & Python& JS & C++ & C )

最新华为OD机试

真题目录:点击查看目录
华为OD面试真题精选:点击立即查看

2025华为od 机试2025B卷-华为机考OD2025年B卷

题目描述

一个 DNA 序列由 A/C/G/T 四个字母的排列组合组成。 G 和 C 的比例(定义为 GC-Ratio )是序列中 G 和 C 两个字母的总的出现次数除以总的字母数目(也就是序列长度)。在基因工程中,这个比例非常重要。因为高的 GC-Ratio 可能是基因的起始点。

给定一个很长的 DNA 序列,以及限定的子串长度 N ,请帮助研究人员在给出的 DNA 序列中从左往右找出 GC-Ratio 最高且长度为 N 的第一个子串。

DNA序列为 ACGT 的子串有: ACG , CG , CGT 等等,但是没有 AGT , CT 等等

数据范围:字符串长度满足 1≤n≤1000 1≤n≤1000 ,输入的字符串只包含 A/C/G/T 字母

输入描述

输入一个string型基因序列,和int型子串的长度

输出描述

找出GC比例最高的子串,如果有多个则输出第一个的子串

示例1

输入

ACGT
2

输出

CG

说明

ACGT长度为2的子串有AC,CG,GT3个,其中AC和GT2个的GC-Ratio都为0.5,CG为1,故输出CG

示例2

输入

AACTGTGCACGACCTGA
5

输出

GCACG

说明

虽然CGACC的GC-Ratio也是最高,但它是从左往右找到的GC-Ratio最高的第2个子串,所以只能输出GCACG。

解题思路

滑动窗口算法是解决这类子串问题的理想方法,尤其在需要查找固定长度子串的特定特性时。对于寻找最高GC比率的DNA子串问题:

  1. 窗口定义:固定大小为子串长度的窗口,在DNA序列上从左到右滑动

  2. 初始窗口:计算序列开头的第一个子串中G和C的数量,得到初始GC比率

  3. 窗口滑动:窗口向右移动时,只需考虑两个变化:

    • 移出窗口的字符(如果是G或C,GC计数减1)
    • 移入窗口的新字符(如果是G或C,GC计数加1)
  4. 增量计算:无需重新扫描整个子串,只需调整计数器

    • 时间复杂度从O
### 华为OD机考 2025B 数字游戏 Java 编程题 解决方案 在华为OD机考 2025B中,数字游戏相关的编程题目通常涉及算法设计、数据结构应用以及逻辑推理。以下是一个可能的数字游戏问题及其解决方案。 #### 问题描述 假设有一个数字游戏,玩家需要从一个整数数组中选择若干个数字,使得这些数字的和等于目标值 `target`。要求输出所有可能的组合。如果不存在这样的组合,则返回空列表。 **输入:** - 一个整数数组 `nums`。 - 一个整数目标值 `target`。 **输出:** - 所有可能的组合列表,每个组合是一个子数组。 **示例:** ```plaintext 输入: nums = [2, 3, 6, 7], target = 7 输出: [[7], [2, 2, 3]] ``` #### 解决方案 以下是使用回溯法(Backtracking)解决该问题的 Java 实现: ```java import java.util.ArrayList; import java.util.List; public class NumberGame { public static List<List<Integer>> combinationSum(int[] candidates, int target) { List<List<Integer>> result = new ArrayList<>(); if (candidates == null || candidates.length == 0) return result; // 排序以优化剪枝 java.util.Arrays.sort(candidates); backtrack(result, new ArrayList<>(), candidates, target, 0); return result; } private static void backtrack(List<List<Integer>> result, List<Integer> tempList, int[] candidates, int remain, int start) { if (remain < 0) return; // 超过目标值,直接返回 if (remain == 0) { // 找到一个组合 result.add(new ArrayList<>(tempList)); return; } for (int i = start; i < candidates.length; i++) { tempList.add(candidates[i]); backtrack(result, tempList, candidates, remain - candidates[i], i); // 不移动起点,允许重复使用 tempList.remove(tempList.size() - 1); // 回溯 } } public static void main(String[] args) { int[] nums = {2, 3, 6, 7}; int target = 7; List<List<Integer>> result = combinationSum(nums, target); System.out.println("结果: " + result); } } ``` #### 代码说明 1. **输入排序**:为了优化剪枝操作,首先对输入数组进行排序[^1]。 2. **回溯函数**:通过递归实现回溯,每次尝试将当前数字加入临时列表,并递归调用自身以寻找剩余目标值的组合。 3. **剪枝条件**:当剩余目标值小于 0 时,停止进一步递归;当剩余目标值等于 0 时,保存当前组合并返回。 4. **重复使用元素**:允许同一个数字被多次使用,因此递归调用时传入的起点索引不增加。 #### 时间复杂度与空间复杂度 - **时间复杂度**:最坏情况下为 \(O(2^n)\),其中 \(n\) 是数组长度,因为每个数字都有选或不选两种状态。 - **空间复杂度**:取决于递归深度,最坏情况下为 \(O(n)\)[^2]。 #### 测试结果 运行上述代码,对于输入 `nums = [2, 3, 6, 7]` 和 `target = 7`,输出结果为: ```plaintext 结果: [[2, 2, 3], [7]] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

算法大师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值