很多人说,神经网络是一个“黑盒”,很难解释其成功的预测是依据什么。从本质上讲,每个神经网络都代表一个单一的数学函数。这意味着,当您着手将神经网络用于某些任务时,您的假设是存在一些数学函数可以相当好地近似观察到的行为。当我们训练神经网络时,我们试图找到一个这样合理的近似值。
因为这些函数通常极其复杂,所以我们使用图形而不是标准公式表示法来表示它们。这些图帮助我们组织我们对我们开始构建的功能的思考,结果证明对于特定任务,一些图比其他图工作得更好。神经网络领域的大量研究和开发都是为这些图发明新的架构,而不是发明全新的算法。
那么什么是计算图?
计算图是用图论语言表示数学函数的一种方式。计算图被定义为有向图,其中节点对应于数学运算。节点由边连接,图中的一切要么是节点,要么是边。
在计算图中,节点是输入值或用于组合值的函数。当数据流过图形时,边会收到它们的权重。输入节点的出站边用该输入值加权;来自函数节点的出站节点通过使用指定函数组合入站边的权重来加权。