机器学习笔记 - 理解计算图的概念

本文介绍了计算图在表示和理解神经网络中的作用,它是一种表示复杂数学函数的图形方式。计算图通过节点和边来组织数学运算,便于处理大规模的神经网络。文中以简单的例子说明计算图的工作原理,并展示了如何通过调整权重来优化函数以适应预测任务。虽然神经网络有时被称为黑盒,但实际上是可调整的复杂数学函数,其架构设计对性能至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

很多人说,神经网络是一个“黑盒”,很难解释其成功的预测是依据什么。从本质上讲,每个神经网络都代表一个单一的数学函数这意味着,当您着手将神经网络用于某些任务时,您的假设是存在一些数学函数可以相当好地近似观察到的行为。当我们训练神经网络时,我们试图找到一个这样合理的近似值。

因为这些函数通常极其复杂,所以我们使用图形而不是标准公式表示法来表示它们。这些图帮助我们组织我们对我们开始构建的功能的思考,结果证明对于特定任务,一些图比其他图工作得更好。神经网络领域的大量研究和开发都是为这些图发明新的架构,而不是发明全新的算法。

那么什么是计算图?

计算图是用图论语言表示数学函数的一种方式。计算图被定义为有向图,其中节点对应于数学运算。节点由边连接,图中的一切要么是节点,要么是边。

在计算图中,节点是输入值或用于组合值的函数。当数据流过图形时,边会收到它们的权重。输入节点的出站边用该输入值加权;来自函数节点的出站节点通过使用指定函数组合入站边的权重来加权。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值