数据集Kaggle链接
数据集分布:
第一列为人名,第二列为国家标签
代码开源地址
Kaggle代码链接
https://www.kaggle.com/code/houjijin/name-nationality-classification
Gitee码云链接
人名国籍分类 Name Nation classification: using BILSTM to predict individual's nationality by their name
github链接
RNN序列模型类编写
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
device = torch.device('mps') if torch.backends.mps.is_available() else torch.device('cpu')
class SimpleRNN(nn.Module):
def __init__(self, input_size, hidden_size, num_layers):
super(SimpleRNN, self).__init__()
self.hidden_size = hidden_size
self.input_size = input_size
self.num_layers = num_layers
self.output_size = 18
self.rnn = nn.RNN(input_size, hidden_size, num_layers = num_layers, batch_first=True)
self.fc = nn.Linear(self.hidden_size, self.output_size)
def forward(self, x, hidden):
output, hidden = self.rnn(x, hidden)
output = output[:, -1, :]
output = self.fc(output)
return output, hidden
def init_hidden(self, batch_size):
hidden = torch.zeros(self.num_layers, batch_size, self.hidden_size, device=device)
return hidden
class SimpleLSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers):
super(SimpleLSTM, self).__init__()
self.hidden_size = hidden_size
self.input_size = input_size
self.num_layers = num_layers
self.output_size = 18
self.rnn = nn.LSTM(input_size, hidden_size, num_layers=num_layers, batch_first=True)
self.fc = nn.Linear(self.hidden_size, self.output_size)
def forward(self, x, hidden, c):
output, (hidden, c) = self.rnn(x, (hidden,