自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Code · Cloud · Think · Repeat

专注于【大数据】、【云原生】、【云计算】、【人工智能】等领域

  • 博客(587)
  • 收藏
  • 关注

原创 【云计算】云主机的亲和性策略(四):云主机组

本文详细探讨了云主机组在实现亲和性与反亲和性策略中的应用。云主机组作为策略载体,通过显式声明组策略类型来约束虚拟机调度。文章分析了调度器的工作流程,包括策略存储、宿主机筛选和最优选择等关键步骤,并比较了 AWS、Azure 等主流云平台的实现差异。此外,还介绍了标签选择器等其他实现方法,特别是 Kubernetes 中的节点亲和性和 Pod反亲和性配置。这些技术可确保关键业务分散部署,避免单点故障,提升系统可用性。

2025-08-02 10:54:18 283

原创 【云计算】云主机的亲和性策略(三):云主机 & 宿主机

本文阐述了云主机与宿主机的核心关系及技术原理。云主机通过虚拟化技术在宿主机上创建,共享底层硬件资源但相互隔离,类似公寓与大楼的关系。关键点包括:虚拟化层实现资源隔离与调度;资源超卖、快速弹性和故障隔离是主要优势;但存在“吵闹邻居”、性能损耗等风险。公有云中用户无需感知宿主机,由云平台统一调度。文章还对比了容器与裸金属服务器的差异,强调理解这一关系对云架构设计的重要性。

2025-08-02 09:38:38 386

原创 【云计算】云主机的亲和性策略(二):集群节点组

本文通过云计算场景中的集群节点组(Master/Core/Task)和宿主机调度,解释了反亲和性策略的实现过程。通过创建不同严格程度的反亲和性组,确保关键节点(Master/Core)分散部署以提升高可用性,同时允许弹性计算节点(Task)适度集中以优化资源利用率。文章还模拟了宿主机故障场景,验证了分层反亲和策略的有效性,并分析了不同节点组采用差异化策略的设计考量。

2025-08-01 10:15:00 644

原创 【云计算】云主机的亲和性策略(一):快乐旅行团

本文通过旅行团分车的生动比喻,解释了云主机组的反亲和性策略原理。文章将 30 名员工类比为 30 台云主机,大巴车对应宿主机,安全分散组对应反亲和性云主机组。调度员(云平台调度器)根据 "同一部门员工必须分散在不同车辆" 的规则进行分配,确保单点故障时影响最小化。相比自由选座、标签分组或指定车队等方法,云主机组策略具有用户省心、调度高效和故障隔离三大优势。文章还补充了 "车辆不足" 等现实场景的技术对应,最终强调这种智能分散策略能有效保障业务连续性。

2025-08-01 10:00:00 1155

原创 【ELasticsearch】集群故障模拟方案(二):磁盘空间满、重选主节点

本文介绍了 Elasticsearch 集群故障模拟的两种场景:磁盘空间满和主节点选举问题。针对磁盘空间满模拟,详细说明了通过 dd 和 fallocate 命令快速填充磁盘的方法,对比了两种命令的差异及适用场景,同时提供了集群状态监控和清理方案。对于主节点选举问题,给出了识别主节点、停止主节点服务并观察选举过程的步骤。最后强调了安全注意事项和关键监控指标,为测试集群容错能力提供指导。全文包含具体命令示例和参数说明,适合运维人员参考实施。

2025-07-31 10:15:00 1040

原创 【ELasticsearch】集群故障模拟方案(一):节点宕机、节点离线

本文介绍了两种 Elasticsearch 集群故障模拟方案。节点宕机模拟:通过 kill 进程或停止服务强制终止节点,观察集群响应和恢复情况;节点网络隔离模拟:使用 iptables 阻断节点间的 9300 端口通信,测试集群容错机制。两种方案均包含详细的操作步骤、命令解释和恢复方法,特别说明了 iptables 规则的作用原理及注意事项。该方案可用于验证 Elasticsearch 集群的容错能力和故障恢复机制。

2025-07-31 10:00:00 1522

原创 【ELasticsearch】案例:AWS 上 Elasticsearch 对接 NLB / ALB

本文详细介绍了在 AWS 上通过 NLB/ALB 对接 Elasticsearch 集群的方案。重点说明如何配置专用协调节点作为请求入口,并创建 NLB 或 ALB 进行负载均衡。关键配置包括节点角色设置、安全组规则、健康检查策略,以及客户端访问方式。架构实现了流量入口与数据处理的分离,协调节点处理请求聚合,数据节点专注分片操作,主节点负责集群管理。对比显示 NLB 更适合 ES场 景,因其高性能、低延迟和源 IP 保留特性。该方案显著提升了 Elasticsearch 在云环境下的可用性和扩展性。

2025-07-28 15:00:00 1164

原创 【ELasticsearch】搭建有负载均衡 ELB 的 ES 集群

本文探讨了在公有云上为 Elasticsearch 集群封装 ELB 负载均衡器的设计优势。ELB 提供单一入口点,简化客户端配置,实现高可用性、负载均衡和集群可扩展性,同时增强安全性。相比直接连接 ES 节点,ELB 方案降低了客户端复杂度,避免了单点故障风险,并优化了流量分发。文中指出,ELB 应仅对接专用协调节点而非所有节点,以提升性能并确保集群稳定性。这是生产环境中 ES 集群部署的最佳实践,特别适用于中大规模集群场景。

2025-07-28 14:00:00 587

原创 【ELasticsearch】温、冷数据节点能是同一个节点吗

在 Elasticsearch 中,虽然技术上可以让一个节点同时承担“温”和“冷”数据层的角色,但这通常不是最佳实践。温层节点需要较好的 CPU、内存和高速磁盘以支持查询,而冷层节点侧重低成本、高密度存储。混合部署会导致硬件需求冲突、资源干扰风险,增加管理复杂度,并削弱分层存储的优化效果。建议在生产环境中使用独立的物理节点分别作为温节点和冷节点,以实现性能隔离和成本效益。仅在小规模测试或开发环境中可考虑临时混合配置。

2025-07-27 13:48:31 1406

原创 【ELasticsearch】节点角色分离最佳实践

本文介绍了一个分层 Elasticsearch 生产集群设计方案,包含热、温、冷、冷冻四层存储架构。热层采用高性能 NVMe SSD 处理实时写入和高频查询;温层使用 SAS SSD 存储近期访问数据;冷层配置大容量 HDD 存储历史数据;冷冻层则结合对象存储实现长期归档。文章详细说明了各层的硬件配置、节点角色设置和分片策略,并提供了数据流动逻辑示意图和 ILM 策略示例。该架构通过严格分层实现了性能隔离和成本优化,SSD 使用量减少 70% 以上,存储成本可降低 5 倍,同时保持灵活的扩展性和合规性。

2025-07-27 11:18:02 1077

原创 【ELasticsearch】节点角色分类与作用解析

ELasticsearch 集群通过角色隔离实现性能与稳定性的平衡 —— 热层追求速度,协调层消化流量,主节点专注决策,温冷层优化成本。各角色各司其职,构建高可用分布式系统。

2025-07-26 18:40:16 1628 1

原创 【Elasticsearch】跨集群检索(Cross-Cluster Search)

跨集群检索(CCS)是 Elasticsearch 应对分布式数据挑战的利器,完美实现了 “数据物理分散,逻辑集中查询”。它解决了数据驻留、扩展性、简化应用访问等核心问题。然而,其性能高度依赖网络,且在生产中需谨慎处理版本兼容性、安全配置、网络优化、监控运维以及理解其功能限制(如不支持事务)。合理规划和配置 CCS,能极大地提升大规模、分布式 Elasticsearch 部署的灵活性和价值。

2025-07-23 22:38:56 841 1

原创 【Elasticsearch】快照生命周期管理 SLM(实战篇)

本文详细介绍了 Elasticsearch 快照生命周期管理 SLM 的实战应用,以电商平台日志集群为例,展示如何实现自动化备份与保留策略。

2025-07-23 10:15:00 1526

原创 【Elasticsearch】快照生命周期管理 SLM(理论篇)

Elasticsearch 的快照生命周期管理(SLM)和索引生命周期管理(ILM)是两大核心数据治理工具。SLM 专注于自动化备份与恢复,通过定时创建/删除快照(如每日备份至 S3)确保灾备能力;ILM 则优化在线数据存储,将索引按热、温、冷阶段分层迁移,最终自动删除过期数据。两者核心区别在于:SLM 操作快照副本(外部仓库),由时间触发;ILM 管理原始索引(集群内部),基于年龄/大小等条件。典型协作场景中,ILM 处理数据的"生老病死",SLM 负责"拍遗照"留存,共同实现存储成本优化与数据可恢复性。

2025-07-22 10:30:00 784

原创 【Elasticsearch】安全地删除快照仓库、快照

本文详细解析了 Elasticsearch 中删除快照仓库和快照的安全机制。删除仓库操作仅移除集群内的注册信息,不会删除底层存储中的实际快照数据。要彻底清理物理数据,需在删除仓库前通过 API 删除快照,或直接操作存储系统。删除单个快照时,系统会智能清理仅被该快照引用的段文件,保留被其他快照共享的数据。这种基于引用计数的增量快照机制确保了删除操作的安全性,不会影响其他快照的完整性。文章通过乐高积木的比喻形象说明了快照间的数据共享关系。

2025-07-22 10:15:00 705

原创 【Elasticsearch】快照与恢复功能详解

Elasticsearch 的快照与恢复是一个强大、灵活且高效的机制,是任何严肃的生产部署不可或缺的一部分。通过理解其增量备份原理、仓库管理、SLM 自动化以及细致的恢复策略(特别是 include_global_state 的处理),Elasticsearch 工程师能够构建可靠的数据保护、迁移和灾难恢复方案。切记:备份的价值只有在成功恢复时才能体现,因此定期的恢复演练至关重要。

2025-07-21 10:30:00 696

原创 【Elasticsearch】Elasticsearch 跨机房部署

Elasticsearch 跨机房部署需综合考虑网络延迟、带宽和稳定性,通过分片分配感知、副本策略和主节点分布确保高可用。配置应包含机架/机房标记、GC 调优和跨机房专线,并实施快照策略和故障转移测试。某跨境电商案例采用三地部署,通过 CCR 实现数据同步,故障时 28 秒内完成切换,支持日均 5 亿次搜索,延迟控制在 150ms 内,达到 99.99% 可用性。关键经验包括奇数主节点分布、动态副本调整和实时监控网络指标与分片状态。

2025-07-21 10:15:00 476

原创 【Elasticsearch】合适的锅炒合适的菜:性能与成本平衡原理公式解析

让最新鲜的食材用最快的灶台,老火靓汤用柴慢慢煨,既保住招牌菜口碑,又省下真金白银。

2025-07-20 09:47:39 1309

原创 【Elasticsearch】冷热集群架构

冷热集群架构(Hot-Warm Architecture)是一种将 Elasticsearch 集群节点按数据访问频率划分为热、温、冷三层的部署模式。热层处理最新写入数据,温层存储常查询数据,冷层归档极少访问数据。该架构具有显著的成本效益、性能优化和自动化数据生命周期管理等优势。典型应用场景包括电商订单系统和物联网监控系统。搭建时需合理规划硬件配置,通过节点角色标记和 ILM 策略实现数据自动迁移,并监控数据分布情况。

2025-07-20 09:45:48 1262

原创 【人工智能】AI Agent 实战:使用 Dify 搭建个人在线旅游助手

本文介绍了使用 Dify 平台搭建个人在线旅游助手 AI Agent 的实战教程。文章分为准备工具、构建 Agent 和优化输入三个部分:首先需要配置 Google 搜索、webscraper 爬虫和 Wikipedia 工具;然后通过创建空白 Agent 应用并添加这些工具;最后通过设置变量(目的地、旅行天数、预算)来规范化用户输入。教程包含详细操作步骤和示例输出,展示了如何打造一个能提供酒店推荐、行程规划等服务的 AI 旅游助手,帮助用户掌握 Agent 构建、提示词撰写和变量使用等核心技能。

2025-07-19 09:54:11 1162

原创 【人工智能】使用 Dify 搭建 AI 图片生成应用

本文介绍了使用 Dify 平台快速搭建 AI 图片生成应用的方法。主要内容包括:1)获取并配置 Stability API 密钥;2)设置模型供应商(如 OpenAI 或 Groq 平台);3)通过 Dify 构建 Agent 智能体,配置 LLM 模型和绘画工具;4)提示词工程基础,包括系统提示词撰写和约束设置;5)应用发布与分享。文章还探讨了画风指定、请求拒绝等实用技巧,并解释了模型幻觉的概念。该教程为开发者提供了完整的 AI 绘图应用构建方案,适合快速入门图像生成技术。

2025-07-18 23:56:57 1116

原创 【Elasticsearch】Elasticsearch 快照恢复 API 参数详解

本文详细解析了 Elasticsearch 快照恢复 API 的三个核心参数:indices(指定恢复的索引)、rename_pattern(定义重命名匹配模式)和rename_replacement(定义重命名规则)。通过多个实际案例展示了参数组合使用效果,包括恢复特定索引、通配符匹配、排除索引以及复杂重命名等场景。文章特别强调了索引命名的规范要求,解释了 Elasticsearch 对字符长度和类型的限制原因,包括安全性、性能、兼容性等方面的技术考量。

2025-07-17 23:57:45 1890 1

原创 【人工智能】通过 Dify 构建智能助手

本文介绍了如何利用 Dify 平台快速创建具备自主任务处理能力的 AI 助手。文章从定义智能助手的核心能力(目标规划、任务拆解等)入手,详细说明了操作流程:选择模板或自定义创建,配置推理模型,编写任务指令,添加知识库和工具,设置 Function calling 或 ReAct 推理模式,并配置对话开场白和文件上传功能。最后强调调试预览后即可发布为 Web 应用,适用于财务报表分析、Logo 设计等多样化场景。

2025-07-14 23:06:52 1225

原创 【人工智能】通过 Dify 构建聊天助手

本文介绍了如何使用 Dify 平台构建对话型聊天助手应用。文章首先说明了对话型应用的适用场景,包括客户服务、在线教育、医疗保健和金融服务等领域。然后详细讲解了应用编排步骤:从创建应用、编写提示词、添加上下文和文件上传功能,到调试和最终发布。特别展示了如何创建面试官应用的示例,包括设置对话开场白和问题建议。

2025-07-14 22:27:33 1070

原创 【人工智能】Dify 中的 5 种应用类型

Dify 提供了 5 种基于大语言模型的应用类型:聊天助手(多轮对话)、文本生成应用(单次任务)、Agent(智能推理)、对话流(复杂流程)和工作流(批处理任务)。用户可通过三种方式创建应用:基于模板(新手友好)、空白创建(自定义开发)或导入 DSL 工程文件(快速部署)。不同应用类型在交互方式、API 接口和上下文管理上存在差异,开发者可根据需求选择适合的构建方式。Dify 同时提供 API 封装、WebApp 托管和开发工具界面,支持各类 AI 应用的快速实现与部署。

2025-07-13 15:28:06 718

原创 【人工智能】Dify 接入大模型简介

Dify 是一款基于大语言模型的 AI 应用开发平台,支持接入多种主流模型供应商(如 OpenAI、Anthropic、讯飞星火等)。平台将模型分为系统推理、Embedding、Rerank和语音转文字四类,用户可根据需求选择。

2025-07-13 09:55:24 1226

原创 【人工智能】AI Agent 开发平台:Dify

Dify 是一款开源的大语言模型应用开发平台。它融合了 后端即服务和 LLMOps 的理念,使开发者可以快速搭建生产级的生成式 AI 应用。即使你是非技术人员,也能参与到 AI 应用的定义和数据运营过程中。由于 Dify 内置了构建 LLM 应用所需的关键技术栈,包括对数百个模型的支持、直观的 Prompt 编排界面、高质量的 RAG 引擎、稳健的 Agent 框架、灵活的工作流,并同时提供了一套易用的界面和 API。这为开发者节省了许多重复造轮子的时间,使其可以专注在创新和业务需求上。

2025-07-13 09:34:15 1758

原创 【人工智能】AI Agent 工作流及产品介绍

AI Agent 的工作流程是一个 “感知 → 思考 → 行动 → 学习” 的智能闭环。目前该领域处于爆发期,既有像 LangChain / AutoGen 这样的强大开发框架,也有 AutoGPT / BabyAGI 这样的概念先驱,更有 GPTs 这样的易用平台和 Devin 这样的专业领域标杆。优秀的 Agent 产品正在从实验走向实用,在客服、编程、数据分析、个人助理等多个领域展现出巨大潜力。衡量 Agent 好坏的核心在于其自主完成任务、有效使用工具、动态规划调整和持续学习进化的能力。随着 LLM

2025-07-12 16:27:33 1007

原创 【Elasticsearch】检索模板(Search Template)

Elasticsearch检索模板是一种使用 Mustache 模板语言编写的预定义查询模板,将查询逻辑与参数分离,实现动态和可重用的搜索功能。主要应用场景包括标准化查询、参数化搜索、复杂查询简化和权限控制,具有安全性高、可维护性强、灵活和性能优化等优势。通过实际案例展示了基础检索模板(支持商品名称模糊匹配、价格范围过滤)和条件模板(可选促销商品筛选)的使用方法,并指出模板设计时需避免语法错误和结构问题。检索模板适用于电商商品筛选等需要动态参数注入的场景。

2025-07-12 10:34:59 333

原创 【人工智能】ChatGPT、DeepSeek-R1、DeepSeek-V3 辨析

ChatGPT(由 OpenAI 开发)和 DeepSeek(由深度求索公司开发)都是基于大语言模型(LLM,Large Language Model)的技术,但它们在模型架构、训练数据、优化目标和具体应用上存在差异。

2025-07-07 23:24:56 2651 1

原创 【人工智能】AI 应用分类

AI 应用已广泛覆盖多个领域,主要分为:(1)大语言模型擅长文本处理;(2)AI 搜索优化信息检索;(3)编程工具提升开发效率;(4)图像视频生成创作多媒体内容;(5)音频生成制作音乐;(6)3D 建模辅助设计;(7)办公工具自动化工作流程;(8)医疗 AI 辅助诊断;(9)机器人实现物理交互。各类 AI 产品各具特色,用户可按需选择,未来将向多模态融合和自主决策方向发展。

2025-07-07 10:00:00 1348

原创 【人工智能】AI Agent 技术与应用场景解析

2025 年被广泛视为 AI Agent 元年,随着技术的成熟,AI Agent 将从辅助工具(Copilot)进化为自主执行者(Agent),甚至成为 “数字员工”,重塑企业工作流和人机协作模式。未来,AI Agent 可能会进一步结合具身智能(机器人控制)和多 Agent 系统,实现更复杂的自动化任务。

2025-07-06 22:28:14 1311

原创 【Elasticsearch】自定义评分检索

这篇文章介绍了 Elasticsearch 中的自定义评分机制,重点讲解了 Function Score Query 和 Boosting Query 两种方法。Function Score Query 通过基础查询结合多个评分函数进行综合评分调整,并支持多种评分组合方式。Boosting Query 则通过正向/负向查询和降权系数对特定结果进行降权处理而非完全排除。这两种方法都可用于满足业务特定需求、个性化排序、商业逻辑等场景,使搜索结果更符合实际业务需求。

2025-07-06 16:08:05 1731

原创 【Elasticsearch】深度分页及其替代方案

深度分页指查询结果集中非常靠后的数据,主要使用 from+size 参数组合。这种查询方式存在严重性能问题。Search After、Scroll API、限定特定时间范围等方案可有效解决传统分页在深度查询时的性能瓶颈,建议根据实际场景选择合适的替代方法。

2025-07-05 22:23:18 1322

原创 【Elasticsearch】检索排序 & 分页

本文介绍了 Elasticsearch 的检索排序与分页功能,包括测试数据准备、排序实现(单字段/多字段/日期排序)、基础分页与深度分页的差异,以及高效的 search_after 分页方法。通过综合示例展示了高亮、排序与分页的组合应用,并提供了实践建议:合理设置分页参数避免性能问题,使用 search_after 优化深度分页,排序时注意字段类型限制,高亮查询需控制返回片段数量。这些功能组合使用可以构建高效的数据检索系统。

2025-07-05 22:22:44 1142 1

原创 【Elasticsearch】检索高亮

Elasticsearch 的高亮功能用于在搜索结果中标记匹配文本片段。片段是从原始文本提取的包含关键词的短文本,由 fragment_size 和 number_of_fragments 控制。通过案例演示了基础高亮、自定义标签、多字段高亮等用法,并对比不同参数设置的效果。对于长文本,合理配置片段参数可优化展示效果和性能。

2025-07-05 16:25:37 1093

原创 【人工智能】大语言模型(LLM)& NLP

大语言模型是基于海量数据和参数训练的 "超级文字预测器",通过统计概率模仿人类语言,能完成聊天、写作、编程等多任务。与传统 NLP 技术相比,LLM 具有通用性、无需标注数据、参数规模超大等特点,实现了从专用工具到全能助手的进化。虽然 LLM 属于 NLP 范畴,但其 "涌现能力" 和模糊需求理解能力标志着技术的质变。作为 NLP 的 "究极形态",LLM 未来或将融合多模态,但语言核心仍植根于 NLP 基础技术。

2025-07-03 23:56:20 926

原创 【云计算】企业项目 & 策略授权

企业项目和策略授权是云资源管理中两个互补的核心机制。企业项目作为资源组织和隔离的容器,主要实现资源分组、成本核算和部门协作;策略授权则定义用户/用户组对资源的操作权限规则。两者的关键区别在于:企业项目确定资源管理边界,策略授权规定可执行操作。

2025-07-03 22:17:13 1186

原创 【Elasticsearch】most_fields、best_fields、cross_fields 的区别与用法

Elasticsearch 多字段搜索策略对比 multi_match 查询提供了三种核心策略:best_fields(最佳字段)、most_fields(多字段总和)和 cross_fields(跨字段统一)。best_fields 取最高分字段,适用于查询词集中在单字段的场景;most_fields 累加各字段得分,适合分散匹配或同义词搜索;cross_fields 将多字段视为一个逻辑字段,解决词项分散问题。

2025-06-28 16:46:05 1109

原创 【Elasticsearch】全文检索 & 组合检索

本文介绍了 Elasticsearch 中的全文检索技术,主要包括四种核心检索方式:(1)match 查询支持分词检索和模糊匹配;(2)match_phrase 用于精确短语匹配,可设置词间距;(3)match_phrase_prefix 实现短语前缀匹配;(4)multi_match 支持跨多字段检索。通过商品数据案例演示了每种查询的具体应用,包括参数设置和结果分析,帮助理解不同检索场景下的实现方式和效果差异。全文检索技术为复杂搜索需求提供了灵活高效的解决方案。

2025-06-28 12:30:48 1784

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除