论文阅读 | Video Frame Interpolation via Adaptive Separable Convolution

前言:ICCV2017的一篇基于核做视频插帧的文章,adaConv改进版
论文地址:【here】

Video Frame Interpolation via Adaptive Separable Convolution

引言

基于核的方法比基于光流的方法能更好的应对遮挡、模糊、亮度变化等情况,但是基于核的方法是每个像素点得到一个核,核的大小又必须很大因为要处理大的位移变化,因此所需要的内存空间会变得非常大
具体如文章所述

. The convolution kernels jointly account for the two separate steps of motion estimation and re-sampling involved in traditional frame interpolation methods. In order to handle large motion, large kernels are required. For example, Niklaus et al. employ a neural network to output two 41×41 kernels for each output pixel. To generate the kernels for all pixels in a 1080p
video frame, the output kernels alone will require 26 GB of memory. The memory demand increases quadratically with the kernel size and thus limits the maximal motion to be handled.

网络架构

本文的主要思想,将一个2维的核拆成2个一维的核,最后可由两个1维核的乘积得到2维核
即对于前后两帧,则分别需要得到一个2维核,拆开则需要4个一维核
在这里插入图片描述
具体文章部分

Our method addresses this problem by estimating a pair of 1D kernels that approximate a 2D kernel. That is, we estimate hk1,v, k1,hi and hk2,v, k2,hi to approximate K1 as k1,v ∗ k1,h and K2 as k2,v ∗ k2,h. Thus, our method reduces the number of kernel parameters from n2 to 2n for each kernel. This enables the synthesis of a high-resolution video frame in one pass and the incorporation of perceptual loss to further improve the visual quality of the interpolation results, as detailed in the following subsections.

实验部分

定量实验
在这里插入图片描述
在这里插入图片描述
定性实验
在这里插入图片描述
同时用了L1损失和感知损失的不同
在这里插入图片描述

总结

这篇文章主要提供了一个两个一维核构成一个二维核的方式,降低存储量,更多的是原文adaConv的延伸,改动不大

<think>好的,我需要回答用户关于Transformer模型中spatial_transforms模块的使用或定义的问题。首先,我需要确认用户所说的“spatial_transforms模块”具体指的是什么,因为标准的Transformer架构中并没有这个标准模块。用户可能指的是在计算机视觉任务中对图像进行空间变换的模块,或者是在某些定制化的Transformer实现中加入的空间变换层。 接下来,我应该考虑常见的Transformer变体,尤其是在视觉领域的应用,比如Vision Transformer (ViT)或Deformable Transformer。例如,Deformable DETR中可能引入了可变形注意力机制,这涉及到空间变换。另外,一些工作可能会在特征提取后应用空间变换,如旋转、缩放等数据增强手段,或者是通过可学习参数进行的空间变换,如空间变换网络(Spatial Transformer Networks, STN)。 然后,我需要查阅相关资料,确认是否有现有的Transformer模型明确使用了名为spatial_transforms的模块。例如,在Spatial Transformer Networks中,STN模块可以插入到CNN中,对输入进行空间变换,这可能被某些研究者应用到Transformer中。此外,一些视频处理的Transformer可能会在帧之间进行空间对齐,使用类似的空间变换模块。 用户提供的引用中提到了Video Frame Interpolation via Adaptive Separable Convolution,这可能与视频帧插值中的空间变换有关,但不确定是否直接关联到Transformer。需要进一步确认是否有结合了这类方法的Transformer模型。 接下来,我应该组织回答的结构,首先说明标准Transformer没有该模块,然后讨论可能的变体或应用场景,比如视觉Transformer中的空间注意力机制或STN的整合。需要提供具体的例子,如Deformable Transformer或某些ViT的改进版本,并解释这些模块的作用和实现方式。同时,代码示例可以帮助用户理解,可能需要给出一个简化的PyTorch实现,展示如何在Transformer中加入空间变换层。 此外,用户可能需要了解如何在自己的项目中应用这样的模块,因此相关问题可以涉及如何集成空间变换到Transformer、该模块对模型性能的影响,以及具体的应用场景如目标检测或视频处理等。 最后,确保回答符合格式要求,使用正确的中文,LaTeX公式格式正确,并在引用处添加标识。需要验证所有技术细节的准确性,避免错误信息。</think>### Transformer模型中空间变换模块的定义与使用 在标准Transformer架构中并不存在名为$spatial\_transforms$的固有模块。该术语通常出现在**计算机视觉任务中对图像进行空间变换的定制化实现**中,例如结合了Spatial Transformer Networks (STN)[^1]或Deformable Attention机制的改进版本。以下是几种常见应用场景: --- #### 1. **与Spatial Transformer Networks (STN) 的结合** STN通过可学习的仿射变换对输入特征图进行空间对齐,可被集成到Transformer的预处理阶段: ```python import torch.nn as nn class SpatialTransformer(nn.Module): def __init__(self): super().__init__() self.localization = nn.Sequential( nn.Conv2d(3, 8, kernel_size=7), nn.MaxPool2d(2, stride=2), nn.ReLU(), nn.Conv2d(8, 10, kernel_size=5), nn.MaxPool2d(2, stride=2), nn.ReLU() ) self.fc_loc = nn.Sequential( nn.Linear(10 * 16 * 16, 32), nn.ReLU(), nn.Linear(32, 6) ) self.fc_loc[2].weight.data.zero_() self.fc_loc[2].bias.data.copy_(torch.tensor([1,0,0,0,1,0], dtype=torch.float)) def forward(self, x): theta = self.localization(x) theta = theta.view(-1, 10*16*16) theta = self.fc_loc(theta) theta = theta.view(-1, 2, 3) grid = nn.functional.affine_grid(theta, x.size()) x = nn.functional.grid_sample(x, grid) return x # 集成到Vision Transformer的输入层 class ViTWithSTN(nn.Module): def __init__(self): super().__init__() self.stn = SpatialTransformer() self.transformer = TransformerEncoder(...) ``` --- #### 2. **Deformable Attention中的空间变换** 在目标检测任务中,Deformable DETR通过**可变形注意力机制**动态调整注意力区域,本质是一种隐式的空间变换: $$ \text{DeformAttn}(q, p) = \sum_{k=1}^K W_k \cdot x(p + \Delta p_{qk}) $$ 其中$\Delta p_{qk}$为可学习的偏移量[^1]。 --- #### 3. **视频处理中的帧间对齐** 在视频Transformer中,空间变换可能用于跨帧特征对齐。例如,通过光流估计模块生成位移场,再对特征图进行插值: ```python class FrameAlignment(nn.Module): def __init__(self): super().__init__() self.flow_estimator = FlowNet() def forward(self, prev_frame, current_frame): flow = self.flow_estimator(prev_frame, current_frame) aligned_frame = warp(current_frame, flow) return aligned_frame ``` --- ### 关键设计考量 1. **计算效率**:空间变换可能引入额外计算量(如双线性插值),需通过稀疏注意力或分层结构优化。 2. **可微分性**:必须保证梯度可通过变换操作反向传播(如使用`grid_sample`函数)。 3. **任务适配性**:在图像分类中用于增强旋转不变性,在检测/分割中用于形变目标建模。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值