Diffusion Planner:扩散模型重塑自动驾驶路径规划(ICLR‘25)

1. 概述

2025年2月14日,清华大学AIR智能产业研究院联合毫末智行、中科院自动化所和香港中文大学团队,在ICLR 2025会议上发布了Diffusion Planner——一种创新性的基于Diffusion Transformer的自动驾驶规划模型架构。该系统联合建模周车运动预测与自车行为规划,显著提升了复杂场景下的决策效率与稳定性,克服了传统学习方法对后处理的依赖,推动了自动驾驶系统从“黑盒生成”走向“可控可调”的新时代。

2. 核心技术

在这里插入图片描述

该算法创新性地设计了基于 Diffusion Transformer 的自动驾驶规划模型架构,高效处理复杂场景输入,并联合建模周车运动预测与自车规划中的多模态驾驶行为,充分发挥扩散模型在闭环规划中的潜力,解决了现有基于学习的规划方法对后处理的严重依赖问题。此外,借助扩散模型的引导机制,模型在部署阶段能够灵活适应不同的驾驶需求,提高泛化能力与实用性。

2.1 轨迹生成为核心建模任务

  • 将自车规划与周车运动预测统一为 未来轨迹生成任务;
  • 以协同建模的方式模拟多车交互行为,捕捉动态交通环境中的 自然协同行为模式;
  • 避免传统多阶段预测+规划框架中的信息割裂和误差累积问题。

2.2. 基于 Diffusion Transformer 的生成式轨迹建模

  • 架构核心为 Diffusion Transformer(DiT),融合扩散建模与注意力机制;
  • 采用扩散模型的前向加噪与反向去噪过程生成未来轨迹;
  • 具备强建模能力,适应复杂多模态交通行为。

2.3 多源感知输入结构化表达

  • 使用轻量级编码器提取以下环境感知数据:
    • 周车历史轨迹与当前状态;
    • 道路拓扑结构与静态障碍物;
    • 目标导航信息;
  • 通过 交叉注意力机制 与加噪后的初始轨迹进行深度融合,提升轨迹生成准确性。

2.4. 起始状态引导

  • 避免模型复现已有历史轨迹,破坏规划多样性;
  • 仅使用 自车当前位姿(位置+朝向) 与周车当前状态,拼接进初始轨迹;
  • 提供有效初态引导,减轻去噪任务难度,提升 闭环执行稳定性。

2.5. 扩散引导机制,偏好可控轨迹生成

  • 在测试/部署阶段引入可控目标(如安全性、舒适性、速度偏好等);
  • 多偏好通过 加权组合方式灵活调控;
  • 可启用/禁用偏好机制以适配不同场景需求,提升策略灵活性与适应性。

3. 商业前景

  • Robotaxi 和 Robo-Logistics(无人货运):复杂城市场景下对灵活轨迹生成的刚需;
  • 乘用车辅助驾驶系统(L2+ / L3):需要高安全、稳定、可调控的规划策略;
  • 智能交通系统(ITS)仿真平台:用于城市交通建模与仿真;
  • 自适应路径规划机器人:在城市配送、园区清洁、巡检等场景中部署。
### 关于扩散规划 (Diffusion Planner) #### 定义 在信息技术领域,扩散规划(Diffusion Planner)是一种用于模拟和预测技术或产品如何在网络中传播的方法[^1]。这种方法不仅考虑节点之间的连接关系,还关注信息传递的时间动态特性。 #### 使用场景 扩散模型被广泛应用于社交网络分析、市场推广策略制定以及网络安全研究等方面。通过构建合适的扩散图谱并设定合理的参数集,可以有效评估新产品的潜在影响力及其可能达到的最大覆盖范围[^2]。 #### 实现方式 实现一个有效的扩散规划工具通常涉及以下几个方面: - **数据收集与预处理**: 获取目标系统的结构化表示形式(如邻接矩阵),并对原始数据进行清洗转换以便后续计算。 - **算法选择**: 基于具体应用场景选取适合的扩散机制,比如独立级联模型(ICM)[^3] 或线性阈值(LT)模型等。 - **仿真过程设计**: 利用选定的算法框架编写程序来执行多次随机试验,并统计最终结果以获得稳定可靠的结论。 ```python import networkx as nx from tqdm import trange def simulate_diffusion(graph, seed_nodes, steps=10): activated = set(seed_nodes) newly_activated = list(seed_nodes) for _ in trange(steps): next_newly_activated = [] for node in graph.nodes(): if node not in activated: neighbors = list(set(nx.neighbors(graph, node)) & activated) # Simple threshold-based activation rule if len(neighbors)/len(list(graph.predecessors(node))) >= 0.5: next_newly_activated.append(node) newly_activated = next_newly_activated activated.update(newly_activated) return activated G = nx.karate_club_graph() seed_set = [0] final_active_set = simulate_diffusion(G, seed_set) print(f"Final active nodes count: {len(final_active_set)}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bhoigu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值