【信息学奥赛一本通 C++题解】1286:怪盗基德的滑翔翼

信息学奥赛一本通(C++版)在线评测系统
基础算法 第一节 动态规划的基本模型
1286:怪盗基德的滑翔翼


1. 理解题意

同学们,我们一起来看怪盗基德遇到的这个有趣问题哦。怪盗基德成功偷到了钻石,可倒霉的是他的滑翔翼动力装置被柯南破坏了。现在他在一个城市里,这个城市有一排建筑,一共有 N 幢,而且每幢建筑的高度都不一样呢。

基德可以从这一排建筑中的任意一幢的顶部开始他的逃跑旅程哦。不过他有两个限制条件:一是他只能朝着一个方向逃跑,而且在逃跑过程中不能改变方向;二是因为滑翔翼坏了,他只能从高的建筑滑到低的建筑。

那我们要做的就是算一算,在这些条件的限制下,基德最多能经过多少幢不同建筑的顶部呢,这里面可是包含他一开始所在的那幢建筑哟。比如说,题目给了我们一些建筑的高度数据,像 30020715529929817015865,我们就要找出基德按照规则能经过的最多建筑数量。而且呀,题目中会给出好多组这样的建筑高度数据,我们都要一一算出答案呢。

2. 解题思路

那我们怎么来解决这个问题呢?其实呀,因为基德可以从左往右滑,也可以从右往左滑,所以我们要分别计算这两种情况下他能经过的最多建筑数量,然后取这两个结果里面较大的那个,就是基德最多能经过的建筑数量啦。

那怎么计算从左往右滑时能经过的最多建筑数量呢?我们可以从第一幢建筑开始,依次往后看每一幢建筑。对于每一幢建筑,我们看看它前面的建筑中,哪些比它高。然后记录下从那些比它高的建筑滑到当前建筑时,能经过的最多建筑数量,取其中的最大值再加 1(加上当前建筑本身),这样就能得到以当前建筑为终点时能经过的最多建筑数量啦。

从右往左滑的情况和从左往右滑是差不多的,只是方向反了过来,从最后一幢建筑开始往前看。最后把从左往右滑和从右往左滑得到的最多建筑数量进行比较,大的那个就是我们要的答案哦。

3. 解题步骤

  1. 输入测试数据组数:首先,我们要输入一个整数 k,这个 k 表示题目中会给我们 k 组不同的建筑高度数据哦。
  2. 对于每组测试数据
    • 输入建筑数量:输入一个整数 n,它代表这一组数据里有 n 幢建筑。
    • 输入建筑高度:接着输入 n 个不同的整数,这些整数就代表每幢建筑的高度啦,我们把它们存到一个数组 h 里。
    • 计算从左往右滑的最多建筑数量:我们先创建一个数组 ltr(表示从左到右),用来存储以每幢建筑为终点时能经过的最多建筑数量,一开始把数组里的每个数都设为 1(因为每幢建筑本身就算是经过了 1 幢建筑)。然后从第二幢建筑开始,对于每幢建筑,我们去看它前面的建筑,如果前面的建筑比它高,我们就更新当前建筑能经过的最多建筑数量(取当前值和前面建筑能经过的最多建筑数量加 1 里面较大的那个)。
    • 计算从右往左滑的最多建筑数量:和从左往右滑的做法差不多哦,我们再创建一个数组 rtl(表示从右到左),从最后一幢建筑开始往前看,同样的,如果后面的建筑比当前建筑高,就更新当前建筑能经过的最多建筑数量。
    • 比较并输出结果:最后我们比较从左往右滑和从右往左滑得到的最多建筑数量,把大的那个数输出,这就是基德在这一组建筑高度数据下最多能经过的建筑数量啦。

4. C++代码实现

#include <iostream> // 包含输入输出流的头文件,这样我们就能输入和输出数据啦
using namespace std; 

int main() {
    int k; // 定义变量k,用来存储测试数据的组数
    cin >> k; // 从键盘输入测试数据的组数k

    while (k--) { // 对于每一组测试数据
        int n; // 定义变量n,用来存储这组数据中建筑的数量
        cin >> n; // 从键盘输入建筑的数量n

        int h[105]; // 定义数组h,用来存储建筑的高度,105是为了防止越界
        for (int i = 0; i < n; i++) { // 循环输入每幢建筑的高度
            cin >> h[i]; // 把输入的高度存到数组h里
        }

        int ltr[105] = {1}; // 定义数组ltr,存储从左往右滑时以每幢建筑为终点的最多建筑数量,初始值设为1
        for (int i = 1; i < n; i++) { // 从第二幢建筑开始计算
            ltr[i] = 1; // 先把当前建筑能经过的最多建筑数量设为1
            for (int j = 0; j < i; j++) { // 看当前建筑前面的建筑
                if (h[j] > h[i]) { // 如果前面的建筑比当前建筑高
                    ltr[i] = max(ltr[i], ltr[j] + 1); // 更新当前建筑能经过的最多建筑数量
                }
            }
        }

        int rtl[105] = {1}; // 定义数组rtl,存储从右往左滑时以每幢建筑为终点的最多建筑数量,初始值设为1
        for (int i = n - 1; i >= 0; i--) { // 从最后一幢建筑开始计算
            rtl[i] = 1; // 先把当前建筑能经过的最多建筑数量设为1
            for (int j = n - 1; j > i; j--) { // 看当前建筑后面的建筑
                if (h[j] > h[i]) { // 如果后面的建筑比当前建筑高
                    rtl[i] = max(rtl[i], rtl[j] + 1); // 更新当前建筑能经过的最多建筑数量
                }
            }
        }

        int ans = 0; // 定义变量ans,用来存储最多能经过的建筑数量,初始值设为0
        for (int i = 0; i < n; i++) { // 遍历所有建筑
            ans = max(ans, max(ltr[i], rtl[i])); // 比较并更新最多能经过的建筑数量
        }

        cout << ans << endl; // 输出最多能经过的建筑数量
    }

    return 0;
}

5. 知识点总结

  1. 数组的使用:我们用了几个数组,像 h 数组用来存建筑的高度,ltr 数组存从左往右滑时以每幢建筑为终点的最多建筑数量,rtl 数组存从右往左滑时以每幢建筑为终点的最多建筑数量。数组就像是一排小格子,我们可以把好多相关的数据一个一个地放进去,方便我们后面使用。
  2. 循环结构:这里用了好多层循环哦。最外层的 while 循环用来处理多组测试数据,里面的 for 循环,有的用来输入建筑高度,有的用来计算从左往右和从右往左滑时的最多建筑数量。循环能让我们重复做一些事情,直到满足一定的条件。
  3. 条件判断:在循环里面,我们用 if 语句来判断前面或者后面的建筑是不是比当前建筑高。根据判断的结果,我们就可以决定要不要更新当前建筑能经过的最多建筑数量。条件判断能让我们的程序根据不同的情况做不同的事情。
  4. 求最大值:我们用 max 函数来比较不同情况下的最多建筑数量,找到其中最大的那个。这样我们就能得到怪盗基德最多能经过的建筑数量啦。
  5. 逻辑思维:解决这个问题的时候,我们要想清楚基德可以从两个方向滑,还要分别计算这两个方向能经过的最多建筑数量,最后再比较取大的。这锻炼了我们的逻辑思维能力,让我们学会把一个复杂的问题分成几个小步骤来解决。
### 关于信息学奥赛一本1940题的解答思路 #### 背景介绍 信息学奥赛一本一本经典的竞赛训练教材,涵盖了丰富的题目和算法知识点。对于第1940题的具体内容尚未在现有引用中找到直接描述[^1]。然而,基于该系列书籍的一贯风格以及常见的编程问题类型,可以推测此题可能涉及某种特定的数据结构或算法。 #### 可能的主题方向 根据以往的经验,此类编号较高的题目常会涉及到较复杂的逻辑或者数据处理方法。例如动态规划、图论中的最短路径计算、字符串匹配等问题都是常见考点之一[^3]。 #### 假设分析与解决策略 如果假设这道题属于典型的背包问题变种,则其核心在于如何过合理的状态定义来减少不必要的重复运算从而提高效率;如果是关于树形结构的操作类题目,则需注意递归函数的设计及其边界条件设置合理与否直接影响最终结果准确性等等情况都需要具体考虑清楚后再着手编写相应代码实现方案如下所示: ```cpp // 示例伪代码 - 动态规划求解最大价值 #include <iostream> using namespace std; const int MAX_N = 1e5 + 5; long long w[MAX_N], v[MAX_N]; long long f[2][MAX_N]; int main(){ int n, m; cin >> n >> m; for(int i=1;i<=n;i++) cin>>w[i]>>v[i]; memset(f,0,sizeof(f)); bool now = true; for(int i=1;i<=n;i++){ bool last = !now; for(int j=0;j<=m;j++){ f[now][j]=f[last][j]; if(j>=w[i]) f[now][j]=max(f[now][j],f[last][j-w[i]]+v[i]); } now=!now; } cout<<f[!now][m]<<endl; } ``` 以上仅为一种可能性展示,并不代表实际答案,请参照官方标准解析为准! #### 结语 综上所述,在面对类似挑战时应当先明确所给定参数含义再选取合适的技术手段加以应对才是正途所在之处[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

信奥大黄

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值