描述 ETL流程的主要步骤及其在数仓中的作用
1. 数据提取(Extract)
主要步骤:
-
从不同的数据源中获取原始数据,这些数据可能来自:
-
关系型数据库(MySQL、PostgreSQL 等)。
-
非关系型数据库(MongoDB、Cassandra 等)。
-
日志文件(如 Web 服务器日志)。
-
外部 API(第三方服务数据)。
-
流式数据(如 Kafka、Flume 等)。
-
数据提取方式:
-
全量提取:将整个数据源的所有数据提取到数据仓库,适用于小规模或初始加载场景。
-
增量提取:仅提取新增或更新的数据,减少开销,常见方式包括基于时间戳、主键或变更数据捕获(CDC)。
在数据仓库中的作用:
-
统一数据来源,解决数据分散的问题。
-
提供业务数据的原始视图,为后续步骤提供基础数据。
-
确保数据及时性,为实时或定期分析提供支持。
2. 数据转换(Transform)
对提取的数据进行清洗、转换和处理,以满足数据仓库和业务分析的需求。包括:
2.1. 数据清洗:
-
去除重复数据、无效数据和错误数据。
-
处理缺失值(填充、删除或替换)。
-
标准化数据格式(如日期格式统一)。
2.2. 数据规范化:
- 进行编码转换(如 UTF-8)。
- 统一字段名称和数据类型。
2.3. 数据整合:
-
将来自不同数据源的数据合并,消除冗余。
-
解决数据冲突(如 ID 重复或字段含义不一致)。
2.4. 数据聚合与计算:
-
计算指标,如销售额、用户活跃数等。
-
数据分组、排序、去噪。
2.5. 维度建模:
将数据转换为适合数据仓库表结构的形式(星型或雪花模型)。
在数据仓库中的作用:
- 清洗和标准化数据,确保数据质量。
- 转换数据为分析友好的结构,提升查询效率。
- 整合多源数据,消除数据孤岛,为分析提供全局视图。
- 确保数据一致性,为决策提供准确可靠的依据。
3. 数据加载(Load)
主要步骤:
将转换后的数据加载到数据仓库或数据湖中,供业务分析使用。
数