数仓面试常见问题:4.ETL流程与调度

描述 ETL流程的主要步骤及其在数仓中的作用

1. 数据提取(Extract)

主要步骤:

  • 从不同的数据源中获取原始数据,这些数据可能来自:

  • 关系型数据库(MySQL、PostgreSQL 等)。

  • 非关系型数据库(MongoDB、Cassandra 等)。

  • 日志文件(如 Web 服务器日志)。

  • 外部 API(第三方服务数据)。

  • 流式数据(如 Kafka、Flume 等)。

  • 数据提取方式:

  • 全量提取:将整个数据源的所有数据提取到数据仓库,适用于小规模或初始加载场景。

  • 增量提取:仅提取新增或更新的数据,减少开销,常见方式包括基于时间戳、主键或变更数据捕获(CDC)。

在数据仓库中的作用:

  • 统一数据来源,解决数据分散的问题。

  • 提供业务数据的原始视图,为后续步骤提供基础数据。

  • 确保数据及时性,为实时或定期分析提供支持。

2. 数据转换(Transform)
对提取的数据进行清洗、转换和处理,以满足数据仓库和业务分析的需求。包括:
2.1. 数据清洗:

  • 去除重复数据、无效数据和错误数据。

  • 处理缺失值(填充、删除或替换)。

  • 标准化数据格式(如日期格式统一)。

2.2. 数据规范化:

  • 进行编码转换(如 UTF-8)。
  • 统一字段名称和数据类型。

2.3. 数据整合:

  • 将来自不同数据源的数据合并,消除冗余。

  • 解决数据冲突(如 ID 重复或字段含义不一致)。

2.4. 数据聚合与计算:

  • 计算指标,如销售额、用户活跃数等。

  • 数据分组、排序、去噪。

2.5. 维度建模:
将数据转换为适合数据仓库表结构的形式(星型或雪花模型)。

在数据仓库中的作用:

  • 清洗和标准化数据,确保数据质量。
  • 转换数据为分析友好的结构,提升查询效率。
  • 整合多源数据,消除数据孤岛,为分析提供全局视图。
  • 确保数据一致性,为决策提供准确可靠的依据。

3. 数据加载(Load)
主要步骤:
将转换后的数据加载到数据仓库或数据湖中,供业务分析使用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

piepis

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值