实时数仓与传统离线数仓的区别是什么?
实时数仓(Real-time Data Warehouse)和传统离线数仓(Batch Data Warehouse)在数据处理方式、架构、应用场景等方面存在明显区别。以下是它们的主要区别:
- 数据处理方式
维度 | 实时数仓 | 传统离线数仓 |
---|---|---|
数据采集 | 实时流式采集(Kafka、Flink、Pulsar) | 批量采集(ETL 定时任务,如 Sqoop、DataX) |
数据处理 | 流式计算(Flink、Spark Streaming、Kafka Streams) | 批处理(Hive、Spark、MapReduce) |
数据存储 | 实时数据库(HBase、ClickHouse、Druid、Apache Pinot) | 传统 OLAP 存储(Hive、Presto、Greenplum) |
数据更新 | 实时更新(事件驱动,低延迟) | 批量更新(每天/每小时 T+1) |
查询方式 | 支持秒级查询,适合实时 BI / OLAP | 支持大规模分析查询,适合深度分析 |