
实时计算-Flink框架
文章平均质量分 84
数仓建设的发展趋势是批流一体化。基于native-streaming架构的flink是批流融合的一把尖刀。了解它,并掌握它,才能更好的走在时代的前沿。
piepis
DT时代的一块砖
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
数仓面试常见问题:5.实时数仓与流处理
实时数仓(Real-time Data Warehouse)和传统离线数仓(Batch Data Warehouse)在数据处理方式、架构、应用场景等方面存在明显区别。当前的 OLAP 数据库替换和用户行为分析项目,可能需要结合实时计算(Flink)+ 离线数据分析(Presto / Hive),来满足不同业务需求。融合层:通过 Presto、ClickHouse 混合查询实时+离线数据。离线层:提供大规模数据统计(如年度报表)。实时层:提供秒级数据查询(如监控报警)。(2) 实时数仓架构。原创 2025-03-10 16:32:06 · 626 阅读 · 0 评论 -
Flink典型应用场景
背景 随着网络迅速发展,大数据的处理呈现出非常明显的实时化趋势。在实时化的大趋势底下,了解并熟悉Flink常用的三大典型应用场景,对于我们理解并使用Flink具有很大的帮助。 事件驱动型应用 事件驱动表示一个事件会触发另一个或者是很多个后续的事件,然后这一系列事件会形成一些信息,基于这些信息需要做一定的处理。 通俗讲,事件驱动型应用是一类具有状态的应用,会根据事件流中的事件触发计算、更新状态或进行外部系统操作。 常见于实时计算业务中,比如:实时推荐,金融反欺诈,实时规则预警等。 常见的事件驱动型场景举例原创 2021-07-15 12:30:06 · 5496 阅读 · 1 评论 -
Flink的前世今生
什么是Apache Flink? Apache Flink是一个框架和分布式处理引擎,用于对无限制和有限制的数据流进行有状态的计算。Flink被设计为可在所有常见的集群环境中运行,以内存速度和任何规模执行计算。 追本溯源- Flink的昨天 Flink 起源于 Stratosphere 项目,Stratosphere 是在 2010~2014 年由 3 所地处柏林的大学和欧洲的一些其他的大学共同进行的研究项目。 2014 年 4 月,Stratosphere 的代码被复制并捐献给了 Apache 软件基原创 2020-09-03 19:25:08 · 1790 阅读 · 0 评论 -
批流一体/流批融合
怎样理解批流一体/流批融合 从 用户,运行,运维三个角度来看: 用户: 当前用户在解决流计算和批计算总是将其分开,开发出两套api。流批一体需要解决的首要问题就是用一套逻辑来描述流与批业务。 运行:当前作业总是流批二选一,要么是流作业,要么是批作业。流批统一后,流批选择是计算优化后的结果,同一个作业在不同的阶段呈现出流批两种特性。 运维:当前架构需要运维多个架构,需要维护多个组件,多个系统。流批统一后,一个引擎就可以解决。 ...原创 2020-09-03 14:55:35 · 9782 阅读 · 0 评论