论文题目:
CTformer:用于低剂量CT去噪的无卷积Token2Token扩展视觉变压器
这篇论文主要研究了一种用于低剂量计算机断层扫描(LDCT)图像去噪的新型变换器模型,称为CTformer。
论文地址:https://arxiv.org/abs/2202.13517
项目地址:https://github.com/wdayang/ctformer
项目已复现,项目有些比如patch num 是写死的,如果想要更改patchsize 这类参数会报错,要自己计算num 然后去网络里修改
摘要
低剂量计算机断层扫描(LDCT)去噪是CT研究中的一个重要问题。与正常剂量CT(NDCT)图像相比,LDCT图像在临床应用中会受到严重的噪声和伪影的影响。最近的许多研究表明,视觉变换器在特征表示能力上优于卷积神经网络(CNN)。然而,与CNN不同,视觉变换器在LDCT去噪方面的潜力至今尚未得到充分探索。为了填补这一空白,我们提出了一种无需卷积的Token2Token扩张视觉变换器(CTformer)用于低剂量CT去噪。CTformer使用更强大的Token重排来包含局部上下文信息,从而避免使用卷积。它还通过扩张和移动特征图来捕获更长距离的交互。我们通过静态检查其内部注意力图的模式和动态追踪层次化的注意力流来解释CTformer。此外,