Deep Learning for Anomaly Detection: A Review

本文是对《Deep Learning for Anomaly Detection: A Review》的翻译。

摘要

异常检测,也称为离群点检测或新颖性检测,几十年来一直是各个研究社区中一个持久而活跃的研究领域。仍然存在一些独特的问题复杂性和挑战,需要采用先进的方法。近年来,支持深度学习的异常检测,即深度异常检测,已成为一个关键方向。本文以全面的分类法综述了深度异常检测的研究,涵盖了三个高级类别和11个细粒度类别的方法的进展。我们回顾了他们的主要动机、目标函数、基本假设、优势和劣势,并讨论了他们如何应对上述挑战。我们进一步讨论了一系列可能的未来机遇和应对挑战的新视角。

1 引言

异常检测,也称为离群点检测或新颖性检测,被称为检测与大多数数据实例显著偏离的数据实例的过程。几十年来,异常检测一直是一个活跃的研究领域,早期勘探可追溯到20世纪60年代。由于风险管理、合规性、安全、金融监控、健康和医疗风险以及人工智能安全等日益增长的需求和广泛领域的应用,异常检测发挥着越来越重要的作用,在包括数据挖掘、机器学习、计算机视觉和统计学在内的各个领域都得到了突出的应用。近年来,深度学习在学习高维数据、时间数据、空间数据和图形数据等复杂数据的表达特征方面显示了巨大的能力,突破了不同学习任务的界限。用于异常检测的深度学习,简称深度异常检测,旨在通过神经网络学习特征表示或异

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值