Graph Data Augmentation for Graph Machine Learning: A Survey

本文全面综述了图数据增强(GDA)在图机器学习中的应用,包括节点级、图级和边级任务的增强技术,并探讨了用于自监督学习的目标。GDA通过修改或创建图数据,改善模型泛化,应对GNN的过度平滑问题。然而,自动化、领域自适应、大规模图的扩展性和泛化能力仍是挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是针对《Graph Data Augmentation for Graph Machine Learning: A Survey》的翻译。

摘要

最近,由于数据增强能够创建额外的训练数据和改进模型泛化,因此人们对图机器学习越来越感兴趣。尽管最近出现了这一热潮,但由于图数据的复杂性,非欧几里德结构带来的挑战,这一领域仍相对缺乏探索,这限制了对其他类型数据的传统增广操作的直接类比。在本文中,我们对图数据增强进行了全面和系统的综述,以结构化的方式总结了文献。我们首先根据它们修改或创建的图数据的组件对图数据扩充操作进行分类。接下来,我们将介绍图数据增强的最新进展,并按其学习目标和方法进行分类。最后,我们概述了当前尚未解决的挑战以及未来研究的方向。总体而言,本文旨在澄清现有文献在图数据增强方面的现状,并推动该领域的额外工作。我们提供了一个GitHub存储库,其中包含一个不断更新的阅读列表。

1. 引言

近年来,数据增强(DA)技术大大提高了数据驱动推理的泛化能力和性能。DA技术通过在不增加基础真值标签的情况下创建现有数据的合理变化来增加训练数据量,并在计算机视觉(CV)和自然语言处理(NLP)等领域得到广泛采用。这些技术使推理引擎能够学习在这些变化中进行概括,并关注噪声中的信号。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值