本文是针对《Graph Data Augmentation for Graph Machine Learning: A Survey》的翻译。
用于图机器学习的图数据增强:综述
摘要
最近,由于数据增强能够创建额外的训练数据和改进模型泛化,因此人们对图机器学习越来越感兴趣。尽管最近出现了这一热潮,但由于图数据的复杂性,非欧几里德结构带来的挑战,这一领域仍相对缺乏探索,这限制了对其他类型数据的传统增广操作的直接类比。在本文中,我们对图数据增强进行了全面和系统的综述,以结构化的方式总结了文献。我们首先根据它们修改或创建的图数据的组件对图数据扩充操作进行分类。接下来,我们将介绍图数据增强的最新进展,并按其学习目标和方法进行分类。最后,我们概述了当前尚未解决的挑战以及未来研究的方向。总体而言,本文旨在澄清现有文献在图数据增强方面的现状,并推动该领域的额外工作。我们提供了一个GitHub存储库,其中包含一个不断更新的阅读列表。
1. 引言
近年来,数据增强(DA)技术大大提高了数据驱动推理的泛化能力和性能。DA技术通过在不增加基础真值标签的情况下创建现有数据的合理变化来增加训练数据量,并在计算机视觉(CV)和自然语言处理(NLP)等领域得到广泛采用。这些技术使推理引擎能够学习在这些变化中进行概括,并关注噪声中的信号。