Knowledge Distillation and Student-Teacher Learning for Visual Intelligence

本文全面探讨了知识蒸馏(KD)及其在视觉智能中的应用,包括从单一到多教师的蒸馏策略,无数据、小样本和跨模态学习的情况。还讨论了在线和无教师蒸馏,以及标签需求和无标签蒸馏的挑战。此外,研究了新学习度量、对抗学习和图表示在KD中的作用,并展望了未来的研究方向,如NAS、GNN和跨领域集成。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是蒸馏学习综述系列的第四篇文章,Knowledge Distillation and Student-Teacher Learning for Visual Intelligence: A Review and New Outlooks的一个翻译。

视觉智能的知识蒸馏与学生-老师学习:回顾与新展望

摘要

1 引言

2 KD是什么?为什么要关注它?

3 KD的理论分析

4 基于教师数量的KD

4.1 从一个老师进行蒸馏

4.1.1 来自logits的知识

4.1.2 来自中间层的知识

4.2 从多个教师进行蒸馏

4.2.1 从logits集合中进行蒸馏

4.2.2 从特征集合中进行蒸馏

4.2.3 通过统一数据源进行蒸馏

4.2.4 从单教师到多个子教师

4.2.5 从异构的老师中定制学生

<

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值