本文是LLM系列的文章,针对《An Empirical Study of Catastrophic Forgetting in Large Language Models During Continual Fine-tuning》的翻译。
摘要
灾难性遗忘(CF)是机器学习中发生的一种现象,当模型在学习新信息时忘记了先前学习的信息。由于大型语言模型(LLM)已经显示出优异的性能,揭示CF是否存在于LLM的持续微调中是很有趣的。在本研究中,我们从领域知识、推理和阅读理解的角度对LLM知识中的遗忘现象进行了实证评估。实验表明,灾难性遗忘通常在1b到7b的LLM中观察到。此外,随着规模的增加,遗忘的严重程度也会加剧。将仅解码器模型BLOOMZ与编码器-解码器模型mT0进行比较,BLOOMZ遭受较少的遗忘并且保持更多的知识。我们还观察到,LLM可以在持续微调过程中减轻语言偏见(例如性别偏见)。此外,我们发现,与LLAMA相比,ALPACA在持续微调过程中可以保持更多的知识和能力,这意味着在进一步的微调过程中,一般的指令调整可以帮助缓解LLMs的遗忘现象。
1 引言
2 相关工作
指令调整。指令调整已被证明能有效地将预先训练的语言模型的反应与人类意