An Empirical Study of Catastrophic Forgetting in Large Language Models During Continual Fine-tuning

828 篇文章

已下架不支持订阅

本文研究了在持续微调过程中大型语言模型(LLM)的灾难性遗忘(CF)现象,发现不同规模的LLM在学习新信息时存在遗忘问题,且随着模型规模增大,遗忘现象加剧。对比实验显示,仅解码器模型BLOOMZ比编码器-解码器模型mT0遗忘更少,保持更多知识。同时,指令调优如ALPACA可能有助于减轻遗忘。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列的文章,针对《An Empirical Study of Catastrophic Forgetting in Large Language Models During Continual Fine-tuning》的翻译。

大模型在连续微调过程中灾难性遗忘的实证研究

摘要

灾难性遗忘(CF)是机器学习中发生的一种现象,当模型在学习新信息时忘记了先前学习的信息。由于大型语言模型(LLM)已经显示出优异的性能,揭示CF是否存在于LLM的持续微调中是很有趣的。在本研究中,我们从领域知识、推理和阅读理解的角度对LLM知识中的遗忘现象进行了实证评估。实验表明,灾难性遗忘通常在1b到7b的LLM中观察到。此外,随着规模的增加,遗忘的严重程度也会加剧。将仅解码器模型BLOOMZ与编码器-解码器模型mT0进行比较,BLOOMZ遭受较少的遗忘并且保持更多的知识。我们还观察到,LLM可以在持续微调过程中减轻语言偏见(例如性别偏见)。此外,我们发现,与LLAMA相比,ALPACA在持续微调过程中可以保持更多的知识和能力,这意味着在进一步的微调过程中,一般的指令调整可以帮助缓解LLMs的遗忘现象。

1 引言

2 相关工作

指令调整。指令调整已被证明能有效地将预先训练的语言模型的反应与人类意

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值