LARGE LANGUAGE MODELS AS TRAFFIC SIGNAL CONTROL AGENTS: CAPACITY AND OPPORTUNITY

828 篇文章

已下架不支持订阅

本文提出LLMLight框架,利用大型语言模型进行交通信号控制,实现高效交通管理。LLMLight结合任务描述、交通状况和先验知识,通过LLM的推理能力选择最佳信号相位,展示出优秀的泛化、可解释性和零样本推理能力。在多个真实世界数据集上,LLMLight取得SOTA或竞争性结果,并提出了未来研究方向,包括LLM与RL的结合、多交叉口控制及专业交通管理LLM的发展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《LARGE LANGUAGE MODELS AS TRAFFIC SIGNAL CONTROL AGENTS: CAPACITY AND OPPORTUNITY》的翻译。

大语言模型作为交通信号控制主体:能力与机遇

摘要

交通信号控制对于通过调节红绿灯相位来优化道路网络的效率至关重要。现有的研究主要集中在基于启发式或强化学习(RL)的方法上,这些方法往往缺乏在不同交通场景中的可转移性,并且具有较差的可解释性。本文介绍了一种利用大型语言模型(LLM)执行交通信号控制任务的新方法LLMLight。通过利用LLM令人印象深刻的泛化和零样本推理能力,LLMLight执行了一个人性化的决策过程,以实现高效的交通管理。具体来说,该框架首先将任务描述、当前交通状况和先验知识组合到提示中。随后,我们利用LLM的思想链(CoT)推理能力来识别下一个交通信号相位,确保道路网络的最佳效率。LLMLight在五个真实世界的流量数据集上实现了最先进的(SOTA)或有竞争力的结果。值得注意的是,LLMLight展示了非凡的泛化、可解释性和零样本推理能力,即使没有接受过任何运输管理任务的训练。

1 引言

2 前言

3 交通信号控制

4 实验

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值