The What, Why, and How of Context Length Extension Techniques in Large Language Models

828 篇文章

已下架不支持订阅

本文是LLM系列文章,针对《The What, Why, and How of Context Length Extension Techniques in Large Language Models – A Detailed Survey》的翻译。

摘要

大型语言模型(LLM)的出现代表了自然语言处理(NLP)的一个显著突破,有助于在文本理解和生成方面取得实质性进展。然而,在这些进步中,值得注意的是,LLM在上下文长度外推方面经常面临限制。理解和扩展LLM的上下文长度对于提高其在各种NLP应用程序中的性能至关重要。在这篇调查论文中,我们深入探讨了为什么它是必不可少的多方面问题,以及高级技术可能给NLP应用带来的潜在转变。我们研究了与延长上下文长度相关的固有挑战,并对研究人员使用的现有策略进行了有组织的概述。此外,我们还讨论了评估上下文扩展技术的复杂性,并强调了研究人员在该领域面临的公开挑战。此外,我们还探讨了研究界是否就评估标准达成共识,并确定了需要进一步达成一致的领域。这项全面的调查旨在为研究人员提供宝贵的资源,指导他们了解上下文长度扩展技术的细微差别,并促进对这一不断发展的领域未来进展的讨论。

1 引言

“对我来说,尚习文是关键——由此产生对一切的理解”——肯尼斯·诺兰
大型语言模型(LLM)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值