Rethinking Interpretability in the Era of Large Language Models

828 篇文章

已下架不支持订阅

本文探讨了大型语言模型(LLM)在可解释机器学习中的新机遇和挑战,强调其自然语言解释能力带来的扩展可能性。尽管存在幻觉解释和计算成本等问题,但LLM有可能重新定义可解释性的范围,特别是在数据集分析和交互式解释方面。未来研究的重点将是提高解释的可靠性和利用LLM进行知识发现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Rethinking Interpretability in the Era of Large Language Models》的翻译。

摘要

在过去的十年里,由于越来越大的数据集和深度神经网络的兴起,可解释机器学习已经成为一个令人感兴趣的领域。同时,大型语言模型(LLM)在一系列任务中表现出了非凡的能力,为重新思考可解释机器学习的机会提供了机会。值得注意的是,用自然语言解释的能力使LLM能够扩展人类模式的规模和复杂性。然而,这些新功能带来了新的挑战,例如幻觉般的解释和巨大的计算成本。
在这篇立场文件中,我们首先回顾了评估LLM解释新兴领域的现有方法(包括解释LLM和使用LLM进行解释)。我们认为,尽管LLM有局限性,但它有机会在许多应用程序中,包括在审计LLM本身时,以更宏大的范围重新定义可解释性。我们强调了LLM解释的两个新的研究重点:使用LLM直接分析新的数据集和生成交互式解释。

1 引言

2 背景:定义与评估

3 LLM解释的独特机遇和挑战

4 解释LLM

5 解释数据集

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值