Are Large Language Models Good Prompt Optimizers?

828 篇文章

已下架不支持订阅

本文深入研究了大型语言模型(LLM)作为提示优化器的效果,发现LLM在自我反思和提示细化过程中可能存在局限性,往往受到自身先验知识的影响而非真正反思错误。此外,LLM优化器难以通过单次细化生成合适的目标模型提示。因此,提出了新的“自动行为优化”范式,以更可控方式优化目标模型行为,为自动提示优化领域提供新的研究方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Are Large Language Models Good Prompt Optimizers?》的翻译。

摘要

基于LLM的自动提示优化通常利用LLM作为提示优化器来自我反映和细化提示,在最近的研究中显示出了良好的性能。尽管取得了成功,但这种方法的潜在机制仍未被探索,LLM作为提示优化工具的真正有效性需要进一步验证。在这项工作中,我们进行了全面的研究,以揭示基于LLM的提示优化的实际机制。我们的研究结果表明,LLM优化器在反思过程中很难确定错误的真正原因,倾向于被他们自己的先验知识所偏见,而不是真正反思错误。此外,即使反射在语义上有效,LLM优化器也经常无法通过单个提示细化步骤为目标模型生成适当的提示,部分原因是目标模型的不可预测行为。基于观察结果,我们引入了一种新的“自动行为优化”范式,该范式以更可控的方式直接优化目标模型的行为。我们希望我们的研究能够为自动提示优化的发展提供新的方向。

1 引言

2 背景:基于LLM的自动提示优化

3 评估LLM作为提示优化器

4 基于LLM的提示优化器是否执行有效反射?

5 精炼提示的质量如何以

已下架不支持订阅

### Chain-of-Thought Prompting Mechanism in Large Language Models In large language models, chain-of-thought prompting serves as a method to enhance reasoning capabilities by guiding the model through structured thought processes. This approach involves breaking down complex problems into simpler components and providing step-by-step guidance that mirrors human cognitive processing. The creation of these prompts typically includes selecting examples from training datasets where each example represents part of an overall problem-solving process[^2]. By decomposing tasks into multiple steps, this technique encourages deeper understanding and more accurate predictions compared to traditional methods. For instance, when faced with multi-hop question answering or logical deduction challenges, using such chains allows models not only to generate correct answers but also articulate intermediate thoughts leading up to those conclusions. Such transparency facilitates better interpretability while improving performance on various NLP benchmarks. ```python def create_chain_of_thought_prompt(task_description, examples): """ Creates a chain-of-thought prompt based on given task description and examples. Args: task_description (str): Description of the task at hand. examples (list): List containing tuples of input-output pairs used for demonstration purposes. Returns: str: Formatted string representing the final prompt including both instructions and sample cases. """ formatted_examples = "\n".join([f"Input: {ex[0]}, Output: {ex[1]}" for ex in examples]) return f""" Task: {task_description} Examples: {formatted_examples} Now try solving similar questions following above pattern. """ # Example usage examples = [ ("What color do you get mixing red and blue?", "Purple"), ("If it rains tomorrow, will we have our picnic?", "No") ] print(create_chain_of_thought_prompt("Solve logic puzzles", examples)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值