本文是LLM系列文章,针对《UniMem: Towards a Unified View of Long-Context Large Language Models》的翻译。
摘要
长上下文处理是制约大型语言模型适用性的关键能力。尽管有各种方法致力于增强大型语言模型(LLM)的长上下文处理能力,但它们都是以孤立的方式开发的,缺乏对其优势的系统分析和整合,阻碍了进一步的发展。在本文中,我们介绍了UniMem,这是一个统一的框架,从LLM的记忆增强的角度重新表述了现有的长上下文方法。UniMem有四个关键维度:记忆管理、记忆写作、记忆阅读和记忆注入,为理解各种长上下文方法提供了系统的理论基础。我们在UniMem的基础上重新制定了16种现有方法,并将四种具有代表性的方法:Transformer XL、Memorizing Transformer、RMT和Longformer分析为等效的UniMem形式,以揭示它们的设计原理和优势。基于这些分析,我们提出了UniMix,这是一种融合了这些算法优势的创新方法。实验结果表明,UniMix在处理长上下文方面取得了优异的性能,其困惑度明显低于基线。