UniMem: Towards a Unified View of Long-Context Large Language Models

828 篇文章

已下架不支持订阅

本文提出UniMem,一个统一框架,用于从记忆增强角度理解和整合大型语言模型(LLM)的长上下文处理方法。UniMem包含记忆管理、写作、阅读和注入四个维度,对现有方法进行系统分析。通过将代表方法转化为UniMem形式,作者提出新方法UniMix,结合各种算法优点,在处理长上下文任务时表现出优越性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《UniMem: Towards a Unified View of Long-Context Large Language Models》的翻译。

UniMem:走向长语境大语言模型的统一视角

摘要

长上下文处理是制约大型语言模型适用性的关键能力。尽管有各种方法致力于增强大型语言模型(LLM)的长上下文处理能力,但它们都是以孤立的方式开发的,缺乏对其优势的系统分析和整合,阻碍了进一步的发展。在本文中,我们介绍了UniMem,这是一个统一的框架,从LLM的记忆增强的角度重新表述了现有的长上下文方法。UniMem有四个关键维度:记忆管理、记忆写作、记忆阅读和记忆注入,为理解各种长上下文方法提供了系统的理论基础。我们在UniMem的基础上重新制定了16种现有方法,并将四种具有代表性的方法:Transformer XL、Memorizing Transformer、RMT和Longformer分析为等效的UniMem形式,以揭示它们的设计原理和优势。基于这些分析,我们提出了UniMix,这是一种融合了这些算法优势的创新方法。实验结果表明,UniMix在处理长上下文方面取得了优异的性能,其困惑度明显低于基线。

1 引言

2 前言

3 统一的内存框架

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值