Exploring the Limitations of Graph Reasoning in Large Language Models

本文通过对GPT-4、GPT-3.5等5种LLM进行图遍历问题测试,揭示了它们在图推理深度上的局限性,包括与节点自由度的反比关系、kshot提示的负面影响和正响应偏差。提出了PathCompare新提示技术,显著提升了LLM在图遍历任务中的表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Exploring the Limitations of Graph Reasoning in Large Language Models》的翻译。

探讨图推理在大型语言模型中的局限性

摘要

经过预训练的大型语言模型仅通过基于语言的提示就展示了各种类型的推理能力。然而,在本文中,我们通过图推理的问题来测试5种不同LLM(GPT-4、GPT-3.5、Claude-2、Llama-2和Palm-2)的图推理深度。特别地,我们设计了10个不同的图遍历问题,每个问题都代表着不断增加的复杂性。此外,我们分析了模型在各种设置下的性能,如不同大小的图以及不同形式的kshot提示。我们通过这个基准测试过程强调了LLM的各种局限性、偏差和性质,例如与图中每个节点的平均遍历自由度的反比关系,kshot提示对图推理任务的总体负面影响,以及阻止LLM识别缺乏有效解决方案的正响应偏差。最后,我们提出了一种专门为图遍历任务设计的新提示技术,称为PathCompare,与标准提示和CoT相比,LLM的性能显著提高。

1 引言

2 实验设置

3 一般性讨论

4 PATHCOMPARE提示

5 总结<

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值