Beyond the Limits: A Survey of Techniques to Extend the Context Length in Large Language Models

828 篇文章

已下架不支持订阅

本文详述了如何通过各种技术延长大型语言模型(LLM)的上下文处理能力,涵盖修改位置编码、注意力机制以及模型压缩等方面,以应对长输入序列的挑战。尽管有进展,但仍存在计算成本、模型可解释性等问题,未来研究可聚焦于架构优化、知识整合和训练策略的改进。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Beyond the Limits: A Survey of Techniques to Extend the Context Length in Large Language Models》的翻译。

摘要

最近,大型语言模型(LLM)已经显示出非凡的能力,包括理解上下文、参与逻辑推理和生成响应。然而,这是以牺牲严格的计算和内存要求为代价实现的,阻碍了它们有效支持长输入序列的能力。这项调查全面回顾了最近为延长LLM中的序列长度而设计的技术和方法,从而提高了它们对长上下文理解的能力。特别是,我们回顾并分类了一系列技术,包括架构修改,如修改的位置编码和修改的注意力机制,这些技术旨在增强对较长序列的处理,同时避免计算需求的成比例增加。本研究中研究的各种方法可用于LLM的不同阶段,即训练、微调和推理。这使得LLM能够有效地处理扩展序列。最后一节讨论了当前方法的局限性,以及对未来研究方向的建议,强调了序列长度在LLM持续发展中的重要性。

1 引言

2 长度外延

3 注意力近似

4 无需注意力的Transformer

5 模型压缩

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值