the Impact of Input Length on the Reasoning Performance of Large Language Models

本文研究了输入长度对大型语言模型(LLM)推理性能的影响。发现即使在远低于技术最大值的输入长度下,性能也会显著下降。通过FLenQA数据集,揭示了长度对推理性能的显著影响,且传统困惑度量不适用于长输入推理任务。研究确定了失败模式,为改进LLM提供了方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Same Task, More Tokens: the Impact of Input Length on the Reasoning Performance of Large Language Models》的翻译。

摘要

本文探讨了扩展输入长度对大型语言模型(LLM)能力的影响。尽管LLM在最近取得了进步,但它们在不同输入长度上的性能一致性还没有得到很好的理解。我们通过引入一种新的QA推理框架来研究这一方面,该框架专门用于评估输入长度的影响。我们使用同一样本的多个版本来隔离输入长度的影响,每个版本都使用不同长度、类型和位置的填充进行扩展。我们的研究结果表明,在比技术最大值短得多的输入长度下,LLM的推理性能显著下降。我们表明,退化趋势出现在我们数据集的每个版本中,尽管强度不同。此外,我们的研究表明,传统的困惑度量与LLM在长输入推理任务中的表现并不相关。我们分析了我们的结果,并确定了故障模式,这些模式可以作为未来研究的有用指南,有可能为解决LLM中观察到的局限性的策略提供信息。

1 引言

2 所需数据属性

3 FLenQA

4 主要实验

5 与下一个单

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值