本文是LLM系列文章,针对《Same Task, More Tokens: the Impact of Input Length on the Reasoning Performance of Large Language Models》的翻译。
相同任务,更多token:输入长度对大型语言模型推理性能的影响
摘要
本文探讨了扩展输入长度对大型语言模型(LLM)能力的影响。尽管LLM在最近取得了进步,但它们在不同输入长度上的性能一致性还没有得到很好的理解。我们通过引入一种新的QA推理框架来研究这一方面,该框架专门用于评估输入长度的影响。我们使用同一样本的多个版本来隔离输入长度的影响,每个版本都使用不同长度、类型和位置的填充进行扩展。我们的研究结果表明,在比技术最大值短得多的输入长度下,LLM的推理性能显著下降。我们表明,退化趋势出现在我们数据集的每个版本中,尽管强度不同。此外,我们的研究表明,传统的困惑度量与LLM在长输入推理任务中的表现并不相关。我们分析了我们的结果,并确定了故障模式,这些模式可以作为未来研究的有用指南,有可能为解决LLM中观察到的局限性的策略提供信息。